Предисловие к юбилейному изданию (2006)

Предисловие ко второму изданию (1989)

Предисловие к первому изданию (1976)

Глава 1. Для чего мы живем?

Глава 2. Репликаторы

Глава 3. Бессмертные спирали

Глава 4. Генная машина

Глава 5. Агрессия: стабильность и эгоистичная машина

Глава 6. Генное братство

Глава 7 Планирование семьи

Глава 8. Битва поколений

Глава 9. Битва полов

Глава 10. Почеши мне спину, а я тебя оседлаю

Глава 11. Мемы – новые репликаторы

Глава 12. Хорошие парни финишируют первыми

Глава 13. Длинная рука гена

 

 

Предисловие к юбилейному изданию (2006)[1]

На меня отрезвляюще действует мысль о том, что с книгой “Эгоистичный ген” я прожил почти полжизни. Шли годы, и после выхода каждой из семи моих последующих книг издатели организовывали лекционные туры в целях ее рекламы. Какой бы из этих книг ни было посвящено мое выступление, слушатели всегда встречали новую книгу с отрадным воодушевлением, вежливо аплодировали и задавали умные вопросы. Затем они выстраивались в очередь за моими книгами, покупали их и просили меня надписать для них… “Эгоистичный ген”. Я немного преувеличиваю. Некоторые из них все же покупали новую книгу, а что до остальных, то моя жена утешает меня, доказывая, что для людей, только что открывших для себя нового автора, вполне естественно начинать знакомство с ним с его первой книги, и, прочитав “Эгоистичный ген”, они наверняка еще доберутся и до моего последнего и в настоящее время самого любимого детища.

У меня было бы больше поводов для недовольства, если бы я считал, что книга “Эгоистичный ген” безнадежно устарела и вместо нее теперь лучше читать что-нибудь другое. К сожалению (в каком-то смысле – к сожалению), это не так. Многие подробности менялись, и факты сыпались как из рога изобилия. И все же, за одним исключением, к которому я незамедлительно вернусь, в этой книге найдется совсем немного утверждений, которые я поспешил бы взять назад или за которые теперь я стал бы просить прощения. Покойный Артур Кейн, один из моих любимых преподавателей времен моей учебы в Оксфорде в 60-х годах, а впоследствии профессор зоологии в Ливерпуле, в 1976 году сказал про “Эгоистичный ген”, что это “книга молодого автора”. А затем намеренно процитировал один отзыв о книге Альфреда Айера “Язык, истина и логика”. Мне польстило это сравнение, хотя я и знал, что Айер отрекся от многих взглядов, высказанных им в своей первой книге, и я не мог не отметить явно подразумеваемую Кейном мысль, что и мне следовало бы рано или поздно поступить точно так же.

Для начала я хочу поделиться своими запоздалыми соображениями относительно названия. В 1975 году, при посредничестве моего друга Десмонда Морриса, я показал рукопись своей еще не законченной книги патриарху лондонских книгоиздателей Тому Машлеру в его кабинете в издательстве “Джонатан Кейп” и обсудил с ним перспективы ее публикации. Ему понравилась книга, но не ее название: “В слове ‘эгоистичный’ слишком много негатива”. Не лучше ли было бы назвать книгу “Бессмертный ген”? “Бессмертный” – “позитивное” слово, бессмертие генетической информации – одна из ключевых тем моей книги, и в словосочетании “бессмертный ген” почти столько же интриги, сколько и в моем варианте названия (кажется, ни один из нас тогда не замечал созвучия “Эгоистичного гена” – The Selfish Gene – “Великану-эгоисту” Оскара Уайльда – The Selfish Giant). Теперь я думаю, что Машлер, возможно, был прав. Многие критики, особенно, как я впоследствии убедился, наиболее ярые и философски подкованные, склонны, читая книгу, ограничиваться ее названием. Этот подход, конечно, хорошо окупается, когда дело касается таких книг, как “Сказка о крольчонке Бенджамине” или “История упадка и крушения Римской империи”, но я не раз имел случай убеждаться, что мой “Эгоистичный ген” без пространного пояснения, образованного собственно текстом книги, может создать у читателя превратное представление об ее содержании. Если бы эта книга впервые выходила только теперь, для американского издания от меня так или иначе потребовали бы снабдить ее подзаголовком.

Наилучший способ объяснить название “Эгоистичный ген” состоит в том, чтобы указать, какое слово в нем ударное. Если в названии моей книги делать ударение на слове “эгоистичный”, то можно подумать, что это книга об эгоизме, хотя на самом деле внимание в ней уделяется скорее альтруизму. На самом деле особый упор здесь на слово “ген”, и я сейчас объясню, почему. Один из камней преткновения в рамках дарвинизма связан с той единицей, с которой, по сути, работает естественный отбор, то есть с тем, что именно выживает (или не выживает) в результате такого отбора. Эта единица неизбежно будет более или менее “эгоистичной”. На других уровнях отбор вполне может благоприятствовать альтруизму. Работает ли отбор непосредственно с видами? Если да, мы могли бы ожидать от отдельных организмов альтруистичного поведения “на благо вида”. Они могли бы ограничивать свою рождаемость во избежание перенаселения или сдерживать активность хищничества для охраны поголовья жертв, составляющих кормовую базу их вида. Именно такое – широко распространенное – превратное понимание дарвинизма и послужило первоначальным стимулом для написания этой книги.

Или же естественный отбор, как я настаиваю здесь, непосредственно работает все-таки с генами? Если так, то нас не должны удивлять случаи, когда отдельные организмы ведут себя альтруистично “на благо генов”, например снабжая пищей и защищая своих родственников, которые, скорее всего, обладают общими с ними копиями одних и тех же генов. Эгоизм генов может преобразовываться в альтруизм организмов только за счет альтруизма в отношении близких родственников. В этой книге объясняется суть данного преобразования, а также взаимной выгоды – другого важнейшего генератора альтруизма согласно дарвиновской эволюционной теории. Если бы мне довелось переписать эту книгу, запоздало сделавшись приверженцем “принципа гандикапа” Захави – Графена, я уделил бы в ней внимание также тем представлениям Амоца Захави, согласно которым альтруистические жертвы могут быть чем-то вроде показателя превосходства, подобного раздаче подарков на индейском празднике Потлач: “Видишь, как велико мое превосходство над тобой – я даже могу тебе кое-что пожертвовать!”

Мне бы хотелось еще раз повторить и подробнее изложить основания для использования в названии этой книги слова “эгоистичный”. Главный вопрос здесь в том, какой именно уровень иерархии жизни оказывается неизбежно “эгоистичным”, то есть подверженным непосредственному действию естественного отбора. Должны ли мы наблюдать эгоистичные виды? Эгоистичные группы особей? Эгоистичные организмы? Или эгоистичные экосистемы? Большинство перечисленных вариантов ответа можно как-то обосновать, и у большинства из них были свои сторонники, опрометчиво полагавшие какие-то из этих вариантов правильным ответом. Но они ошибались. Если считать, что основную идею дарвинизма можно лаконично выразить как “эгоистичное что-то”, этим чем-то оказывается именно ген, и основания для этого вывода я и излагаю в своей книге. Независимо от того, убедят ли вас мои аргументы, именно по этой причине я и дал книге ее название.

Надеюсь, сказанного достаточно, чтобы развеять наиболее серьезные заблуждения, связанные с этой книгой. Тем не менее я должен признать, что мне самому доводилось допускать в данной области ошибки. Особенно это касается первой главы, где содержится, в частности, такое характерное предложение: “Давайте попробуем учить щедрости и альтруизму, ибо мы рождаемся эгоистами”. В идее “учить щедрости и альтруизму” нет ничего неправильного, но утверждение “мы рождаемся эгоистами” может ввести читателя в заблуждение. Появление этого тезиса отчасти связано с тем, что я только в 1978 году начал отчетливо представлять себе разницу между носителями (обычно организмами) и ездящими в них репликаторами (в нашем случае – генами; этот вопрос подробно обсуждается в главе 13, добавленной во втором издании). Читая эту книгу, пожалуйста, мысленно вычеркивайте приведенное выше неудачное предложение и другие ему подобные и заменяйте их чем-то соответствующим мыслям, изложенным в данном абзаце.

Учитывая опасность ошибок подобного рода, теперь я хорошо понимаю, как можно превратно понять название этой книги, и уже поэтому мне, наверное, стоило остановиться на варианте “Бессмертный ген”. Еще одним возможным вариантом был бы “Альтруистичный носитель”. Быть может, такое название и показалось бы слишком непонятным, но оно, во всяком случае, разрешало бы ненужный спор о том, ген или организм является единицей естественного отбора (проблема, до последних дней привлекавшая внимание покойного Эрнста Майра). Естественный отбор работает с двумя разновидностями единиц, и спорить здесь на самом деле не о чем. Ген является единицей отбора как репликатор. Организм является единицей отбора как носитель. И то, и другое важно. Ни то, ни другое не следует сбрасывать со счетов. Ген и организм представляют собой две совершенно особые разновидности единиц, и пока мы не оценим разницу между ними, мы неизбежно будем пребывать в прискорбном заблуждении.

Еще одной неплохой альтернативой заглавию “Эгоистичный ген” был бы “Отзывчивый ген” (The Cooperative Gene). Это название может показаться парадоксально противоположным по смыслу, но в одном из ключевых разделов книги я доказываю, что эгоистичным генам свойственна своего рода отзывчивость и склонность к сотрудничеству. Следует подчеркнуть, что это отнюдь не означает процветания групп генов в ущерб отдельным членам таких групп или в ущерб другим подобным группам. Здесь предполагается лишь, что всякий ген действует в собственных интересах на фоне других генов генофонда – набора претендентов на половое перемешивание в пределах вида. Эти другие гены входят в состав среды, в которой выживает каждый ген, точно так же, как в ее состав входят погодные условия, хищники и жертвы, растительность и почвенные бактерии. С точки зрения каждого гена “фоновыми” генами будут те, которые делят с ним общие организмы на своем пути к новым поколениям носителей. В долгосрочной перспективе это означает все другие гены в генофонде вида. Поэтому естественный отбор неизменно благоприятствует всем членам группировок взаимно совместимых генов (то есть в каком-то смысле отзывчивых по отношению друг к другу), когда подобные гены оказываются вместе. Такая эволюция отзывчивых генов ни в коем случае не нарушает фундаментального принципа эгоистичного гена. В главе 5 я разрабатываю эту идею, пользуясь аналогией с командой гребцов, а в главе 13 еще развиваю ее.

Принимая во внимание, что естественный отбор эгоистичных генов склонен благоприятствовать сотрудничеству между ними, следует также признать, что бывают и такие гены, которые ничем подобным не занимаются и работают против интересов остального генома. Одни авторы называли их беззаконными генами, другие – ультраэгоистичными, третьи – просто эгоистичными, неправильно понимая тонкую разницу между ними и теми генами, что действуют в собственных интересах совместно, образуя картели. Примеры ультраэгоистичных генов включают описанные в этой книге гены мейотического драйва и “паразитическую ДНК”, концепция которой была впоследствии разработана рядом авторов под популярным названием “эгоистичная ДНК”. Годы, последовавшие за первой публикацией этой книги, ознаменовались находками все более причудливых примеров ультраэгоистичных генов.

“Эгоистичный ген” критиковали за антропоморфную персонификацию, что тоже требует разъяснений, если не извинений. Я использую два уровня персонификации: генный и организменный. На самом деле с персонификацией генов не должно возникать никаких проблем, потому что ни одному человеку в здравом уме не придет в голову, будто молекулы ДНК обладают индивидуальным сознанием, и ни один вменяемый читатель не станет приписывать автору подобный бред. Однажды мне посчастливилось услышать рассказ классика молекулярной биологии Жака Моно о роли творчества в науке. Я не запомнил в точности его слов, но их смысл состоял в том, что обдумывая некую химическую проблему, он задается вопросом, что бы он делал, если был бы электроном. Питер Аткинс в своей замечательной книге “Еще раз о сотворении” прибегает к похожей персонификации, обсуждая преломление луча света, проходящего сквозь среду с более высоким коэффициентом преломления, вызывающую его замедление. Луч при этом ведет себя так, будто пытается минимизировать время, требуемое для достижения конечной точки. Аткинс представляет его себе как спасателя на пляже, спешащего на помощь утопающему. Следует ли ему бежать прямо по направлению к утопающему? Нет, потому что бежать быстрее, чем плыть, и разумно несколько увеличить долю времени, в течение которого спасатель будет передвигаться по суше. Следует ли ему добежать до точки на берегу, расположенной непосредственно напротив цели, тем самым сведя к минимуму время передвижения по воде? Это будет лучше, но тоже не идеально. Если бы у спасателя было время провести расчеты, он мог бы найти оптимальный промежуточный угол, дающий наилучшее сочетание быстрого бега и последующего неизбежно более медленного плавания. Аткинс подытоживает:

В точности так же ведет себя и свет, проходящий через более плотную среду. Но откуда свет знает (причем, судя по всему, заранее), какой путь займет меньше всего времени? И если уж на то пошло, какое ему до этого дело?

На эти вопросы Аткинс дает интереснейшие развернутые ответы, черпая вдохновение в квантовой теории.

Персонификация такого рода – не просто своеобразный дидактический прием. Иногда она также помогает ученым находить правильные ответы на интересующие их вопросы, избегая искушения допустить неочевидную ошибку. Этот прием можно применять, например, к расчетам эволюционной выгоды альтруизма и эгоизма, отзывчивости и враждебности. Здесь очень легко сбиться и получить неправильный ответ. Персонификация генов, если пользоваться ею с должным вниманием и осторожностью, нередко оказывается кратчайшим путем к спасению дарвиниста-теоретика, утопающего в путанице собственных мыслей. Пытаясь соблюдать осторожность, я в то же время вдохновлялся примером Уильяма Д. Гамильтона. В своей статье, вышедшей в 1972 году (в тот самый год, когда я начал “Эгоистичный ген”), Гамильтон писал:

Естественный отбор благоприятствует тому или иному гену, если совокупность копий этого гена составляет увеличивающуюся долю всего генофонда. Нас здесь будут интересовать гены, предположительно влияющие на социальное поведение своих носителей, поэтому давайте попробуем оживить их обсуждение, приписав им (временно) обладание интеллектом и некоторой свободой выбора. Представьте себе, что такой ген раздумывает, как бы ему увеличить число своих копий, и представьте, что он может выбирать…

Именно в таком духе и следует воспринимать значительную часть “Эгоистичного гена”.

С персонификацией организмов могут возникнуть более серьезные неприятности. Дело в том, что у организмов, в отличие от генов, есть мозги, и поэтому у них действительно могут быть эгоистичные или альтруистичные мотивы в некотором субъективном смысле, который мы будем готовы принять. Если книга называется, например, “Эгоистичный лев”, она вполне может сбить читателей с толку, чего не должно случиться с читателями “Эгоистичного гена”. Точно так же, как можно мысленно поставить себя на место воображаемого луча, разумно выбирающего оптимальный путь для прохождения ряда линз и призм, или воображаемого гена, выбирающего оптимальный путь для прохождения ряда поколений, можно предположить и существование отдельной львицы, рассчитывающей оптимальную поведенческую стратегию для выживания ее генов в долгосрочной перспективе. Первым даром Гамильтона науке биологии был точный математический аппарат, который настоящему дарвиновскому организму, например льву, в сущности, пришлось бы применять, принимая решения, направленные на максимальное повышение длительных перспектив выживания своих генов. В этой книге я пользовался нестрогими словесными эквивалентами таких расчетов и делал это на двух разных уровнях.

В следующем отрывке из главы 8 мы одним махом переходим с одного из этих уровней на другой:

Мы рассматривали условия, при которых матери может быть выгодна гибель слабого детеныша. Интуитивно можно предполагать, что сам он должен бороться до конца, но с теоретической точки зрения это необязательно. Как только такой детеныш становится слишком маленьким и слабым, так что его ожидаемая продолжительность жизни снижается до уровня, при котором извлекаемая им из родительского вклада польза составляет менее половины того, что потенциально могли бы извлечь из этого вклада другие детеныши, слабосильный детеныш должен с достоинством умереть. При этом он обеспечит своим генам максимальный выигрыш.

Это самоанализ на уровне отдельного организма. Предполагается здесь не то, что детеныш выбирает, что доставит ему удовольствие, что будет ему приятно, а то, что отдельные организмы, населяющие дарвиновский мир, проводят расчеты “а что если”, выбирая наилучшую для своих генов стратегию. Эта мысль недвусмысленно высказана ниже в том же абзаце, где совершается быстрый переход к персонификации на генном уровне:

Иными словами, ген, дающий инструкцию: “Тело! Если ты гораздо мельче, чем другие члены одного с тобой помета, откажись от борьбы и умри”, может добиться успеха в генофонде, потому что его шансы попасть в тело каждого спасенного брата или сестры равны 50 %, тогда как шансы выжить, находясь в теле слабосильного детеныша, в любом случае весьма незначительны.

После этого мы возвращаемся к самоанализу нашего детеныша:

В жизни каждого слабого детеныша есть момент, после которого пути назад уже нет. До наступления этого момента он должен продолжать борьбу, а затем отказаться от нее и – что было бы лучше всего – позволить своим собратьям или родителям съесть себя.

Я вполне уверен, что эти два уровня персонификации не должны сбивать с толку, если читать книгу полностью и учитывать контекст. Корректно проводя на обоих уровнях расчеты “а что если”, мы неизбежно придем к одному и тому же выводу. Собственно, по этому критерию и можно судить о корректности таких расчетов. Итак, я не думаю, что решил бы отказаться от персонификации, если бы мне пришлось сейчас писать книгу заново.

Но одно дело – отказаться от написанного, и совсем другое – забыть прочитанное. Что, например, делать со следующим приговором, вынесенным одним читателем из Австралии?

Интереснейшая книга, но порой я жалею, что не могу забыть прочитанное в ней… На каком-то уровне я могу прочувствовать то восхищение, которое у Докинза с такой очевидностью вызывают механизмы работы столь сложных процессов… Но в то же время я склонен во многом винить “Эгоистичный ген” за ряд приступов депрессии, от которых я страдал последние десять с лишним лет… Я никогда не был уверен в своем духовном взгляде на жизнь, но пытался найти нечто более глубокое – пытался верить, хотя это и плохо у меня получалось. Но после прочтения этой книги все мои смутные размышления о религии как ветром сдуло, и они уже никак не могли сформироваться в нечто более цельное. Несколько лет назад это вызвало у меня тяжелый личностный кризис.

Я уже упоминал пару похожих читательских откликов:

Один иностранный издатель моей первой книги признался мне, что по прочтении ее он три ночи подряд не мог заснуть, так встревожила его холодная, мрачная мораль, якобы содержащаяся в ней. Другие читатели спрашивали меня, как мне удается находить в себе силы вставать по утрам. Школьный учитель из одной далекой страны с укоризной писал мне, что одна из его учениц, прочитав книгу, пришла к нему в слезах, оттого что мое сочинение убедило ее в пустоте и бесцельности жизни. Он советовал ей не показывать книгу друзьям, опасаясь, что и они заразятся тем же нигилистическим пессимизмом (“Расплетая радугу”).

Если нечто – правда, то с этим ничего не поделаешь, сколько бы мы ни силились выдавать желаемое за действительное. Вот первое, что я могу сказать. Есть и второе, почти столь же важное. После этих строк я написал:

У нас есть все основания полагать, что в конечной судьбе мироздания действительно нет никакой цели, но разве хоть кто-нибудь из нас связывает надежды собственной жизни с конечной судьбой мироздания? Разумеется нет, по крайней мере если мы в своем уме. Жизнью каждого из нас управляет масса всевозможных, чисто человеческих устремлений и представлений, намного более близких и сердечных. Обвинение науки в том, что она якобы отнимает у жизни ту сердечность, ради которой стоит жить, столь нелепо и ошибочно, столь диаметрально противоположно моим собственным чувствам и чувствам большинства действующих ученых, что едва не повергает меня в отчаяние, в котором меня напрасно подозревают.

Похожую склонность казнить гонца демонстрируют и другие критики, возражающие против тех нехороших социальных, политических или экономических выводов, которые, по их мнению, следуют из “Эгоистичного гена”. В 1979 году, вскоре после первых выборов, выигранных Маргарет Тэтчер, мой друг Стивен Роуз в журнале “Нью сайентист” написал:

Я не хочу сказать, что рекламное агентство “Саатчи и Саатчи” привлекло команду социобиологов в качестве спичрайтеров Тэтчер, и не хочу даже сказать, что некоторые оксфордские и сассекские преподаватели порадовались тому практическому приложению, которое нашли проповедуемые ими простые истины генетического эгоизма. Дело с совпадением модной теории и политических событий обстоит намного сложнее. Однако я действительно полагаю, что когда будет написана история произошедшего в 70-х годах XX века сдвига вправо – от законности и правопорядка к монетаризму и (не столь последовательным) нападкам на этатизм, – то сопутствующие сдвиги в научной моде, хотя бы от моделей группового отбора к моделям кин-отбора в эволюционной теории, будут восприниматься как часть той волны, на которой пришли к власти тэтчеристы с их концепцией неизменной, состязательной и ксенофобской викторианской природы человека.

Под “сассекским преподавателем” подразумевался ныне покойный Джон Мейнард Смит, высоко ценимый и Роузом, и мной, ответивший на это в характерном для него стиле в письме, опубликованном в том же журнале: “А что нам было делать? Подогнать уравнения под другой ответ?” Основная мораль “Эгоистичного гена” содержит мысль (отстаиваемую также в заглавном очерке сборника “Капеллан дьявола”) о том, что нам вовсе не следует черпать свои ценности из дарвинизма, разве что делать это с обратным знаком. Эволюция нашего мозга достигла уровня, позволяющего нам восстать против тирании своих эгоистичных генов. Эта наша способность с очевидностью проявляется, например, в использовании противозачаточных средств. Тот же принцип может и должен работать в более широком масштабе.

 

 

Предисловие ко второму изданию (1989)

За двенадцать лет, прошедших после выхода в свет “Эгоистичного гена”, главная идея книги стала общепринятой и вошла в учебники. Это парадоксально, хотя парадоксальность и не бросается в глаза. Книга не принадлежит к числу тех, которые вначале терпели лишь поношение, а затем постепенно приобретали все больше и больше сторонников, пока в конечном счете не оказались столь ортодоксальными, что теперь мы только удивляемся, чем, собственно, был вызван переполох. Происходило как раз обратное. На первых порах рецензии радовали своей благожелательностью и книгу не считали спорной. Репутация вздорной созревала на протяжении многих лет, и лишь теперь к книге стали относиться как к произведению экстремистскому. Однако именно в те годы, когда за книгой все более закреплялась репутация экстремистской, ее фактическое содержание все менее казалось таковым, приближаясь к общепринятым взглядам.

Теория эгоистичного гена – это теория Дарвина, сформулированная иным способом, чем это сделал Дарвин, но, как мне хотелось бы думать, Дарвин сразу признал бы ее уместность, и она ему понравилась бы. Это, в сущности, логический продукт ортодоксального неодарвинизма, выраженный по-новому. В центре внимания находится не отдельный организм, а взгляд на природу с точки зрения гена. Это иное видение, а не иная теория. На первых страницах моего “Расширенного фенотипа” я объяснил это, воспользовавшись метафорой куба Неккера.

Перед вами плоский рисунок, сделанный чернилами на бумаге, но он воспринимается как прозрачный трехмерный кубик. Посмотрите на него в течение нескольких секунд, и вам покажется, что вперед выступает задняя грань. Продолжайте смотреть, и вновь вернется прежнее впечатление. Оба кубика одинаково соответствуют двумерной информации, поступающей на сетчатку, а в мозгу благополучно возникает то одно, то другое изображение. Ни одно из них нельзя считать более правильным, чем другое. На этом примере я хотел показать, что на естественный отбор можно смотреть с двух разных точек зрения – с точки зрения гена и с точки зрения индивидуума. При правильном понимании они равноценны; это два взгляда на одну и ту же истину. Можно перескакивать с одного на другое, но это будет все тот же неодарвинизм.

 


 

 

Теперь такая метафора кажется мне слишком робкой. Нередко самый ценный вклад ученого заключается не в выдвижении новой теории или обнаружении какого-то нового факта, а в новом взгляде на уже существующие теории или известные факты. Модель куба Неккера вводит в заблуждение, поскольку позволяет считать, что оба наши восприятия одинаково верны. Конечно, метафора эта отчасти правомерна: “углы”, в отличие от теорий, не поддаются проверке экспериментом. Мы не можем прибегнуть к привычным критериям, позволяющим установить истинность или ложность. Однако изменение подхода может в случае удачи подарить нечто большее, чем просто теорию. Оно может создать особую атмосферу мышления, в которой зародится много увлекательных, поддающихся проверке теорий и обнаружатся факты, которые нельзя было даже вообразить. Все это совершенно выходит за пределы метафоры с кубом Неккера. Она ухватывается за идею перескока зрительного восприятия, но оказывается не в состоянии отдать должное ее значению. То, о чем мы толкуем, это не перескок к равноценному взгляду, а – в крайних случаях – преображение.

Я спешу сказать, что мой собственный скромный вклад отнюдь не претендует на такой статус. Тем не менее именно поэтому я предпочитаю не проводить четкой границы между наукой и ее популяризацией. Излагать идеи, которые до того рассматривались только в специальной литературе, – искусство нелегкое. Оно требует глубоко продуманных “перекручиваний” привычного языка и ярких наглядных метафор. Зайдя в обновлении языка и метафор достаточно далеко, можно в конечном счете обрести новый взгляд на вещи. А новый взгляд, как я только что говорил, может сам по себе оказаться оригинальным вкладом в науку. Эйнштейн был неплохим популяризатором, и мне приходит в голову, что его яркие метафоры помогли не только нам, простым смертным. Не подпитывали ли они также его творческий гений?

Взгляд на дарвинизм с точки зрения гена просматривается уже в работах Рональда Э. Фишера и других великих создателей неодарвинизма начала 30-х годов, но лишь в 60-е годы он был четко сформулирован Уильямом Д. Гамильтоном и Джорджем К. Уильямсом. Мне их проницательность казалась чем-то фантастическим. Однако я считал, что они излагают свои представления слишком лаконично и недостаточно решительно. Я был убежден, что более полное и подробное изложение могло бы расставить все, относящееся к живому, по своим местам – как в сердце, так и в мозгу. Я хотел написать книгу, превозносящую взгляд на эволюцию с точки зрения гена. Приводимые в ней примеры я собирался черпать из области социального поведения, что помогло бы исправить бессознательную приверженность к теории группового отбора, которой в то время были пропитаны изложения дарвинизма. Я начал писать эту книгу в 1972 году, когда мне пришлось прервать свои лабораторные исследования вследствие перебоев с электроэнергией, вызванных забастовками. К моему сожалению, после написания двух глав перебои прекратились и я забросил свой проект, пока не получил в 1975 году годичный отпуск для научной работы. Тем временем неодарвинизм развивался, особенно благодаря работам Джона Мейнарда Смита и Роберта Триверса. Теперь я понимаю, что это был один из тех загадочных периодов, когда новые идеи носятся в воздухе. Я писал “Эгоистичный ген” в состоянии какого-то лихорадочного возбуждения.

Когда издательство “Оксфорд юниверсити пресс” предложило мне выпустить книгу вторым изданием, оно настаивало, чтобы я отказался от обычного последовательного пересмотра всего текста, страница за страницей. По их мнению, есть книги, явно обреченные на целый ряд переизданий, но “Эгоистичный ген” не относится к их числу. Первое издание позаимствовало от эпохи, в которую книга была написана, юношеский пыл. В мире повеяло революцией, вспышкой блаженной вордсвортовской зари. Казалось обидным подвергать переделкам дитя тех времен, откармливать его новыми данными или заставлять морщиться от всяких усложнений и оговорок. Так что было решено сохранить первоначальный текст со всеми его огрехами, сексистскими местоимениями и прочими недостатками. Все исправления, ответы на замечания и новые данные помещены в конце книги. Решено было также написать две совершенно новые главы на темы, которые, будучи новыми уже для своего времени, продолжали бы создавать атмосферу зарождающейся революции. Так возникли главы 12 и 13. При этом я черпал вдохновение в двух книгах, особенно волновавших меня в годы, разделяющие два издания: это “Эволюция кооперации” Роберта Аксельрода, поскольку она дает нам некую надежду на наше будущее, и моя собственная книга “Расширенный фенотип”, потому что она всецело владела мной все эти годы и потому что – хотите верьте, хотите нет – это, вероятно, лучшее из того, что я написал и напишу.

Заглавие “Хорошие парни финишируют первыми” я позаимствовал у телепрограммы “Горизонт”, которую представлял на Би-би-си в 1985 году. Это был 50-минутный документальный фильм Джереми Тейлора, посвященный эволюции сотрудничества в свете теории игр. Создание этого фильма, а также другого фильма Тейлора, “Слепой часовщик”, вызвало во мне новый прилив уважения к его профессии. Режиссеры, готовящие программу “Горизонт” (некоторые из их программ показывают в Америке, нередко под рубрикой “Нова”), иногда становятся высококвалифицированными экспертами по освещаемой ими теме. Работе с Джереми Тейлором и с группой, выпускающей “Горизонт”, глава 12 обязана не только своим названием, но и многим другим, за что я им очень признателен.

Недавно мне стало известно одно неприятное обстоятельство: некоторые влиятельные ученые имеют привычку ставить свое имя на печатных трудах, в создании которых они не участвовали. По-видимому, кое-кто из крупных ученых претендует на соавторство, даже если вся их роль сводится к предоставлению рабочего места, денежной субсидии и прочтению готовой рукописи. В таком случае возможно, что репутация некоторых ученых целиком основана на работах их учеников и коллег! Я не знаю, что можно противопоставить такой бесчестности. Быть может, редакторы журналов должны требовать подписанных авторами справок об участии каждого из них в представленной работе. Но все это между прочим. Я поднял этот вопрос с прямо противоположным намерением. Елена Кронин сделала так много для улучшения каждой строки, более того – каждого слова, что ее следовало бы, не будь она столь непреклонной, указать как соавтора всех новых частей книги. Я глубоко благодарен ей и сожалею, что должен ограничить свою признательность лишь этим. Я благодарю также Марка Ридли, Мэриан Докинз и Алана Графена за их советы и конструктивную критику отдельных разделов, а Томаса Уэбстера, Хилари Мак-Глинн и других сотрудников “Оксфорд юниверсити пресс” за то, как бодро они сносили мои капризы и нарушения сроков.

 

 

Предисловие к первому изданию (1976)

Эту книгу следует читать почти так, как если бы это была научная фантастика. Она задумана с целью поразить воображение. Но это не научная фантастика, это наука. Мое отношение к правде точно выражает избитая фраза “превосходит самую смелую фантазию”. Мы всего лишь машины для выживания, самоходные транспортные средства, слепо запрограммированные на сохранение эгоистичных молекул, известных под названием генов. Это истина, которая все еще продолжает изумлять меня. Несмотря на то, что она известна мне уже не один год, я никак не могу к ней привыкнуть. Хочется надеяться, что мне хотя бы удастся привести в изумление других.

Я посвящаю эту книгу трем воображаемым читателям, которые стояли за моей спиной, когда я ее писал, и заглядывали в рукопись. Один из них – это рядовой читатель, то есть непрофессионал. Помня о нем, я почти не прибегал к научному жаргону, а в тех случаях, когда все же приходилось пользоваться специальными терминами, приводил их определения. Мне теперь кажется, что следовало бы по возможности изгонять жаргон и из научных журналов. Я исходил из допущения, что мой непрофессионал не обладает специальными знаниями, но не считал его глупым. Всякий может популярно изложить научную проблему, чересчур упростив ее. Я затратил немало усилий, стараясь представить в доступной форме некоторые сложные и хитроумные проблемы, не прибегая к языку метафизики, но и не в ущерб существу дела. Не знаю, в какой мере я в этом преуспел, так же как не знаю, удалось ли мне достичь другой своей цели – сделать книгу такой интересной и увлекательной, как того заслуживает ее тема. Я давно уже чувствую, что биология должна увлекать не меньше, чем какая-нибудь таинственная история, потому что она и есть некая таинственная история. Я не смею надеяться, что подарил читателю больше, чем крошечную долю того восторга, который способна вызвать тема книги.

Другим моим воображаемым читателем был специалист. Он был настроен резко критически, охая и вздыхая при некоторых моих аналогиях и оборотах речи. Его любимыми выражениями были: “за исключением того-то”, “однако с другой стороны” и “уф”. Я внимательно выслушивал все это и даже, в угоду ему, нацело переписал одну главу, но в конце концов мне пришлось вести рассказ по-своему. Специалист, вероятно, будет не очень-то доволен моей манерой изложения. Тем не менее мне хочется надеяться, что даже он найдет в книге что-то новое, новый подход к хорошо знакомым представлениям; а вдруг она даже натолкнет его на какие-то новые идеи. А если все это слишком самонадеянно, то, быть может, она просто развлечет его в дороге.

Мой третий читатель – студент, то есть тот, кто находится в процессе превращения из обыкновенного человека в специалиста. Если он еще не решил, в какой области биологии ему специализироваться, я надеюсь, что под влиянием этой книги у него возникнет желание поближе ознакомиться с выбранной мною областью – зоологией. Заниматься ею стоит не только потому, что она может быть “полезной” и что животные, в общем, существа “симпатичные”. Есть и другая, более серьезная причина: животные, к которым принадлежим и мы с вами, – это самые сложные и совершенные механизмы из всех известных нам во Вселенной. При такой постановке вопроса трудно понять, как человек может изучать что-то другое! Студенту, уже решившему посвятить себя зоологии, моя книга, надеюсь, окажет известную помощь. Ему непременно придется прорабатывать оригинальные статьи и научные монографии, на которых она основана. Если оригинальные источники покажутся ему трудными для усвоения, мое изложение может облегчить задачу в качестве вводного и вспомогательного пособия.

Совершенно очевидно, что попытка привлечь столь разных читателей сопряжена с определенными опасностями. Могу лишь сказать, что я хорошо сознавал эти опасности, но мне кажется, что положительные стороны такой попытки перевешивают их.

Я этолог, и книга эта посвящена поведению животных. Я многим обязан этологическим традициям, в которых был воспитан. Так, Николас Тинберген не представляет себе, сколь большое влияние оказывал он на меня на протяжении тех двенадцати лет, когда я работал под его руководством в Оксфорде. Слова “машина выживания”, хотя он их и не произносил, вполне могли принадлежать ему. Но этология недавно получила новый стимул, пополнившись идеями из источников, которые не принято считать этологическими. Книга в значительной степени основана на этих новых идеях. Их авторам, среди которых следует прежде всего назвать Дж. К. Уильямса, Дж. Мейнарда Смита, У. Д. Гамильтона и Р. Триверса, я отдаю должное в соответствующих разделах.

Разные люди предлагали для книги названия, которые я с благодарностью использовал для отдельных глав: “Бессмертные спирали” – Джон Кребс, “Генная машина” – Десмонд Моррис, “Генное братство” – Тим Клаттон-Брок и Джин Докинз независимо друг от друга, с извинениями в адрес Стивена Поттера.

Мы можем обращаться к воображаемым читателям со своими благочестивыми надеждами и притязаниями, но пользы от них меньше, чем от реальных читателей и критиков. Я отчаянный приверженец проверок, и Мэриан Докинз пришлось читать несчетное множество черновиков и новых вариантов каждой страницы. Ее широкое знакомство с биологической литературой и понимание теоретических вопросов, а также постоянное воодушевление и моральная поддержка имели для меня очень большое значение. Джон Кребс также прочитал всю книгу в первой редакции. Он знает предмет лучше, чем я, и был безгранично щедр в своих советах и предложениях. Гленис Томсон и Уолтер Бодмер подвергли доброжелательной, но строгой критике мое изложение генетических проблем. Я опасаюсь, что даже пересмотренный текст все еще не вполне удовлетворит их, однако надеюсь, что он покажется им более приемлемым. Я очень благодарен им за потраченное время и за терпение. Джон Докинз зорким глазом выявил все места, изложенные недостаточно ясно, и высказал чрезвычайно конструктивные предложения по их переделке. Я не мог бы пожелать себе более подходящего “интеллигентного неспециалиста”, чем Максвелл Стэмп. Его проницательность, позволившая ему заметить существенный общий недостаток в стиле изложения первого варианта книги, принесла большую пользу окончательному тексту. Конструктивные критические замечания по отдельным главам и другие ценные советы я получил от Джона Мейнарда Смита, Десмонда Морриса, Тома Машлера, Пика Блертона Джонса, Сары Кеттлуэлл, Ника Хамфри, Тима Клаттон-Брока, Луизы Джонсон, Кристофера Грэма, Джефа Паркера и Роберта Триверса. Пат Серл и Стефани Верхувен не только тщательно перепечатывали рукопись, но и воодушевляли меня, делая вид, что это доставляет им удовольствие. Наконец, я хочу поблагодарить Майкла Роджерса из “Оксфорд юниверсити пресс”, который не только сделал полезные критические замечания по рукописи, но и участвовал во всех процессах, связанных с изданием книги, что выходило далеко за пределы его обязанностей.

 

 

Глава 1. Для чего мы живем?

Разумная жизнь на той или иной планете достигает зрелости, когда ее носители впервые постигают смысл собственного существования. Если высшие существа из космоса когда-либо посетят Землю, первым вопросом, которым они зададутся, с тем чтобы установить уровень нашей цивилизации, будет: “Удалось ли им уже открыть эволюцию?”. Живые организмы существовали на Земле, не зная для чего, более трех тысяч миллионов лет, прежде чем истина осенила, наконец, одного из них. Это был Чарльз Дарвин. Справедливости ради следует сказать, что крупицы истины открывались и другим, но лишь Дарвин впервые связно и логично изложил, для чего мы существуем. Дарвин дал нам возможность разумно ответить на вопрос любознательного ребенка, вынесенный в название этой главы. Нам теперь нет нужды обращаться к суевериям, когда мы сталкиваемся с извечными проблемами: существует ли смысл жизни? для чего мы живем? что есть человек? Задав последний из этих вопросов, знаменитый зоолог Джордж Г. Симпсон заявил: “Я хочу… подчеркнуть, что все попытки ответить на этот вопрос, предпринимавшиеся до 1859 года, ничего не стоят и что нам лучше совсем не принимать их во внимание”[2].

В наши дни теория эволюции вызывает примерно столько же сомнений, сколько теория о вращении Земли вокруг Солнца, но мы еще не вполне осознали все значение совершенной Дарвином революции. Зоологией в университетах продолжают заниматься лишь немногие, и даже те, кто выбирает ее своей специальностью, нередко принимают такое решение, не задумываясь над ее глубоким философским смыслом. Философию и предметы, известные под названием “гуманитарных”, по-прежнему преподают так, как если бы Дарвина никогда не было на свете. Со временем такое положение вещей несомненно изменится. Эта книга не ставит своей целью пропаганду дарвинизма вообще. В ней будут рассмотрены последствия эволюционной теории для одной частной темы. Моя цель – изучение биологии эгоизма и альтруизма.

Помимо чисто академического интереса, эта тема безусловно важна для самого человека. Она затрагивает все аспекты его социальной жизни, любовь и ненависть, борьбу и сотрудничество, благотворительность и воровство, жадность и щедрость. На все это могли бы претендовать книги Лоренца “Агрессия”, Ардри “Общественный договор” и Эйбл-Эйбесфельдт “Любовь и ненависть”. Беда этих книг состоит в том, что их авторы совершенно ошибочно представляют себе все эти проблемы, поскольку они не понимают, как происходит эволюция. Они принимают неверное допущение, что самое важное в эволюции – благополучие вида (или группы), а не благополучие индивидуума (или гена). Парадоксально, что Эшли Монтегю критикует Лоренца как “прямого потомка мыслителей XIX века с их представлениями о природе как о чудовище ‘с окровавленными клыками и когтями’”. Насколько я понимаю взгляды Лоренца на эволюцию, он должен быть совершенно заодно с Монтегю, отбрасывая возможные заключения, вытекающие из знаменитого высказывания Теннисона. В отличие от них обоих я считаю, что “природа с окровавленными клыками и когтями” как нельзя лучше выражает наши современные представления о естественном отборе.

Прежде чем начать свое изложение, я хочу вкратце разъяснить, что это за книга, а также предупредить, чего от нее ожидать не следует. Если нам скажут о ком-то, что этот человек прожил долгую и благополучную жизнь среди чикагских гангстеров, мы вправе сделать некоторые предположения о том, какой это человек. Можно предположить, что это человек крутой, всегда готовый пустить в ход оружие и способный обзаводиться преданными друзьями. Нельзя рассчитывать на то, что такие дедукции окажутся безошибочными, но зная кое-что об условиях, в которых данный человек жил и преуспевал, вы в состоянии вывести некоторые заключения о его характере. Основной тезис этой книги состоит в том, что человек и все другие животные представляют собой машины, создаваемые генами. Подобно удачливым чикагским гангстерам, наши гены сумели выжить в мире, где царит жесточайшая конкуренция. Это дает нам право ожидать наличия у наших генов определенных качеств. Я утверждаю, что преобладающим качеством преуспевающего гена должен быть безжалостный эгоизм. Генный эгоизм обычно дает начало эгоистичности в поведении индивидуума. Однако, как мы увидим в дальнейшем, при некоторых особых обстоятельствах ген способен лучше всего достигать собственных эгоистичных целей, поощряя ограниченную форму альтруизма на уровне индивидуальных животных. Слова “особые” и “ограниченная” в последней фразе имеют важное значение. Как бы нам ни хотелось верить, что все обстоит иначе, всеобщая любовь и благополучие вида как целого – концепции в эволюционном плане бессмысленные.

Это подводит меня к первому из нескольких предупреждений о том, чего читатель не найдет в этой книге. Я не проповедую в ней мораль, основанную на эволюции[3]. Я просто говорю о том, как происходила эволюция живых существ. Я не говорю о том, как мы, люди, должны были бы себя вести в нравственном плане. Я подчеркиваю это, потому что мне угрожает опасность оказаться непонятым теми людьми, а их слишком много, кто не умеет отличить констатации положения дел от пропаганды того, как они должны были бы обстоять. Я понимаю, что жить в обществе, в основе которого лежит один лишь установленный геном закон всеобщего безжалостного эгоизма, было бы очень неприятно. Но, к несчастью, как бы мы ни сожалели о тех или иных обстоятельствах, этого недостаточно, чтобы устранить их. Главная цель этой книги – заинтересовать читателя, но если он извлечет из нее какую-то мораль, пусть примет ее как предостережение. Пусть он знает, что если, подобно мне, он стремится к созданию общества, члены которого великодушно и самоотверженно сотрудничают во имя общего блага, ему нечего рассчитывать на помощь со стороны биологической природы человека. Давайте попробуем учить щедрости и альтруизму, ибо мы рождаемся эгоистами. Осознаем, к чему стремятся наши собственные эгоистичные гены, и тогда у нас по крайней мере будет шанс нарушить их намерения – то, на что никогда не мог бы посягнуть ни один другой вид живых существ.

К этим замечаниям относительно обучения следует добавить, что представление о генетически унаследованных признаках как о чем-то постоянном и незыблемом – это ошибка, кстати, очень распространенная. Наши гены могут приказать нам быть эгоистичными, но мы вовсе не обязаны подчиняться им всю жизнь. Просто научиться альтруизму при этом может оказаться труднее, чем если бы мы были генетически запрограммированы на альтруизм. Человек – единственное живое существо, на которое преобладающее влияние оказывает культура, приобретенная в результате научения и передачи последующим поколениям. По мнению одних, роль культуры столь велика, что гены, эгоистичны они или нет, в сущности не имеют никакого значения для понимания человеческой природы. Другие с ними не согласны. Все зависит от вашей позиции в спорах о том, что определяет человеческие качества – наследственность или среда. Это подводит меня ко второму предупреждению о том, чем не является эта книга: она не выступает в роли защитника той или другой из сторон в споре “наследственность или среда”. Конечно, у меня имеется собственное мнение по этому вопросу, но здесь я его выскажу лишь в той мере, в какой оно связано с моими взглядами на культуру, излагаемыми в заключительной главе. Если действительно окажется, что гены не имеют никакого отношения к детерминированию поведения современного человека, если мы в самом деле отличаемся в этом отношении от всех остальных животных, тем не менее остается по крайней мере интересным исследовать правило, исключением из которого мы стали так недавно. А если вид Homo sapiens не столь исключителен, как нам хотелось бы думать, то изучить это правило тем более важно.

Третье предупреждение состоит в том, что книга не содержит подробного описания поведения человека или какого-либо другого конкретного вида животных. Детали поведения рассматриваются в ней только в качестве иллюстративных примеров. Я не буду говорить: “Наблюдая за поведением павианов, вы обнаружите, что они эгоистичны, поэтому существует вероятность, что поведение человека также эгоистично”. В своем примере с чикагским гангстером я рассуждаю совершенно иначе: человек и павиан эволюционировали под действием естественного отбора. Изучая образ действия естественного отбора, приходишь к выводу, что любое существо, эволюционировавшее под его давлением, должно быть эгоистичным. Поэтому следует ожидать, что, занявшись изучением поведения павианов, людей и всех других живых существ, мы обнаружим, что они эгоистичны. Если же наши ожидания окажутся ошибочными и мы увидим в поведении человека подлинный альтруизм, то это будет означать, что мы столкнулись с чем-то загадочным, с чем-то, требующим объяснения.

Прежде чем пойти дальше, следует дать одно определение. Некое существо, например павиан, называют альтруистичным, если оно своим поведением повышает благополучие другого такого же существа в ущерб собственному благополучию. Эгоистичное поведение приводит к прямо противоположному результату. “Благополучие” определяется как “шанс на выживание”, даже если его влияние на перспективы фактической жизни и смерти так мало, что кажется пренебрежимым. Одно из неожиданных следствий современного варианта дарвиновской теории состоит в том, что, казалось бы, банальные и совершенно незначительные влияния на вероятность выживания могут иметь огромное эволюционное значение. Дело в том, что эти влияния оказывались на протяжении огромных промежутков времени, прежде чем они проявились.

Важно понять, что приведенные выше определения альтруизма и эгоизма не субъективны: они касаются поведения. Меня здесь не интересует психология побуждений. Я не собираюсь вступать в споры о том, “действительно” ли люди, совершающие альтруистичные поступки, делают это во имя тайных или подсознательных эгоистичных целей. Возможно, что у них есть такие цели, а может быть и нет, и мы никогда этого не узнаем, но во всяком случае моя книга не об этом. Мое определение касается лишь того, повышает или понижает результат данного действия шансы на выживание предполагаемого альтруиста и шансы на выживание предполагаемого благополучателя.

Продемонстрировать воздействие поведения на отдаленные перспективы выживания крайне сложно. Пытаясь применить наше определение к реальному поведению, мы непременно должны вводить в него слово “по-видимому”. Действие, по-видимому, являющееся альтруистичным, это такое действие, которое на первый взгляд как будто повышает (хотя и слегка) вероятность смерти альтруиста и вероятность выживания того, на кого это действие направлено. При более пристальном изучении нередко оказывается, что действиями кажущегося альтруиста на самом деле движет замаскированный эгоизм. Повторяю еще раз: я не имею в виду, что альтруист втайне руководствовался эгоистичными побуждениями, однако реальные воздействия его поступка на перспективы выживания оказались противоположными тем, какими они казались сначала.

Я приведу несколько примеров поведения, кажущегося эгоистичным и кажущегося альтруистичным. Имея дело с представителями Homo sapiens, трудно подавить в себе привычку к субъективному мышлению, а поэтому я воспользуюсь примерами, относящимися к другим видам. Приведу вначале несколько примеров эгоистичного поведения индивидуальных животных.

Обыкновенная чайка гнездится большими колониями, в которых гнезда расположены на расстоянии 1,5–2 метра одно от другого. Только что вылупившиеся птенцы так малы и беспомощны, что их легко проглотить. Нередко чайка поджидает, пока соседка отвернется или отправится на рыбную ловлю, и, налетев на одного из соседских птенцов, заглатывает его целиком. Она получает таким образом хорошую питательную еду, не утруждая себя добыванием рыбы и не оставляя собственное гнездо без защиты.

Гораздо шире известен мрачный каннибализм самок у богомолов. Богомолы – крупные хищные насекомые. Их обычную пищу составляют мелкие насекомые, например мухи, но они нападают почти на все, что движется. При спаривании самец осторожно взбирается на самку и копулирует. При этом самка, если ей удастся, съедает самца, откусывая ему сначала голову. Она проделывает это, когда самец к ней приближается, либо как только он взберется на нее, либо после того, как они разошлись, хотя, казалось бы, благоразумнее было начать поедать самца после окончания копуляции. Однако создается впечатление, что утрата головы не нарушает ритма полового акта. Более того, поскольку в голове насекомого расположены некоторые тормозящие нервные центры, возможно, что, съедая голову самца, самка повышает его половую активность[4]. В таком случае это дает дополнительную выгоду. Главная же выгода – получение прекрасной пищи.

Для таких крайних проявлений, как каннибализм, прилагательное “эгоистичный” может показаться слишком мягким, хотя оно хорошо соответствует нашему определению. Вероятно, нам легче понять поведение королевских пингвинов в Антарктике: в одной заметке сообщалось, что они стояли на краю воды, не решаясь нырнуть, так как опасались пасть жертвой тюленей. Если бы хоть один из них рискнул нырнуть, остальные узнали бы, есть поблизости тюлень или нет. Никто, естественно, не хочет выступать в роли морской свинки, и поэтому они выжидают, а иногда даже пытаются столкнуть друг друга в воду.

Чаще эгоистичное поведение выражается просто в отказе поделиться каким-нибудь ценным ресурсом – пищей, территорией или брачным партнером. Приведем теперь несколько примеров поведения, очевидно альтруистичного.

Поведение рабочих пчел, жалящих грабителей, которые пытаются украсть у них мед, обеспечивает весьма эффективную защиту. Но эти пчелы, в сущности, выступают в роли камикадзе. Ужалив врага, пчела обрекает себя на гибель, так как при попытке вытащить назад жало она вытаскивает вместе с ним из собственного тела все внутренние органы. Ее самоубийственная акция может спасти запасы пищи, жизненно необходимые семье, но сама она уже не сможет воспользоваться ими. Согласно нашему определению, такое поведение следует называть альтруистичным. Напомню еще раз, что речь идет не об осознанных побуждениях. Как в этом случае, так и в примерах эгоизма такие побуждения, есть они или нет, не имеют отношения к нашему определению.

Пожертвовать жизнью ради друзей – несомненное проявление альтруизма, но подвергнуть себя ради них небольшому риску также следует считать альтруизмом. Многие мелкие птицы, заметив летящего хищника, например ястреба, издают характерный “крик тревоги”, в ответ на который вся стая принимает соответствующие меры, чтобы избежать нападения. Судя по косвенным данным, птица, подающая сигнал тревоги, подвергает себя особенно большой опасности, потому что привлекает внимание хищника к себе. Это лишь незначительный добавочный риск, но тем не менее такой акт следует, во всяком случае на первый взгляд, отнести в соответствии с нашим определением к числу альтруистичных.

Наиболее распространенные и самые ясно выраженные акты альтруизма среди животных совершают родительские особи, в особенности матери, по отношению к своим детенышам. Самки высиживают их в гнездах или вынашивают в собственном теле, кормят ценой больших жертв и подвергают себя большому риску, защищая их от хищников. Приведем лишь один пример. Многие птицы, гнездящиеся на земле, заметив приближающегося хищника, например лису, начинают “отводить” его от гнезда. Родительская особь отходит от гнезда, прихрамывая и приподняв одно крыло, как если бы оно было сломано. Хищник, почуяв легкую добычу, уходит от гнезда с птенцами. В конце концов птица перестает притворяться и взлетает вверх как раз вовремя, чтобы избежать лисьих челюстей. Она, вероятно, спасла жизнь птенцов, но рисковала при этом сама.

Рассказывая все это, я не пытаюсь что-то доказать. Избранные примеры никогда не могут служить серьезными аргументами ни для какого обобщения, заслуживающего доверия. Я привожу эти истории просто в качестве иллюстраций того, что я понимаю под альтруистичным или эгоистичным поведением на уровне индивидуумов. Эта книга покажет, как эгоизм или альтруизм отдельного индивидуума можно объяснить тем основополагающим законом, который я называю эгоистичностью гена. Однако сначала я должен остановиться на одном ошибочном определении альтруизма, поскольку оно широко известно и даже преподносится учащимся во многих школах.

Это объяснение основано на уже упоминавшемся мною неверном представлении, что предназначение эволюции живых существ – совершать действия “во благо данного вида” или “во благо данной группы”. Нетрудно видеть, как эта идея зародилась в биологии. Большая часть жизни животного посвящена размножению, а большинство актов альтруистичного самопожертвования, наблюдаемых в природе, совершаются родителями во благо своих детенышей. “Сохранение вида” – обычный эвфемизм, означающий размножение, и оно несомненно представляет собой следствие размножения. Достаточно лишь слегка продолжить наши рассуждения, чтобы прийти к выводу, что “функция” размножения состоит в продолжении существования вида. От всего этого лишь один короткий неверный шаг к заключению о том, что поведение животных обычно направлено на сохранение вида. Совершенно очевидно, что следующий вывод – альтруизм по отношению к собратьям по виду.

Такой ход рассуждений можно сформулировать в терминах, приближающихся к дарвиновским и не слишком четких. Эволюция действует через естественный отбор, а естественный отбор означает дифференциальное выживание “наиболее приспособленных”. Но идет ли при этом речь о наиболее приспособленных индивидуумах, наиболее приспособленных расах, наиболее приспособленных видах или о чем-то еще? В ряде случаев это не играет большой роли, но когда мы говорим об альтруизме, решающее значение этого момента становится очевидным. Если в процессе, который Дарвин назвал борьбой за существование, конкурируют виды, то индивидуум, по-видимому, лучше всего рассматривать как пешку в игре, которой жертвуют во имя высших интересов вида как целого. Выразим это в несколько более пристойной форме: такая группа, как вид или популяция в пределах вида, отдельные члены которой готовы принести себя в жертву во имя благополучия данной группы, имеет больше шансов избежать вымирания, чем соперничающая с ней группа, отдельные члены которой ставят на первое место собственные эгоистичные интересы. Поэтому мир оказывается населенным главным образом группами, состоящими из самоотверженных индивидуумов. В этом суть теории “группового отбора”, которую биологи, недостаточно хорошо знакомые с эволюционной теорией, долгое время считали правильной и которая открыто и прямо изложена в знаменитой книге Веро К. Уинн-Эдвардса и популярно представлена Робертом Ардри в его книге “Общественный договор”. Ортодоксальную альтернативную теорию обычно называют “индивидуальным отбором”, хотя лично я предпочитаю говорить о генном отборе.

На изложенные выше соображения сторонник “индивидуального отбора” не задумываясь ответит примерно следующим образом. Даже в группе альтруистов почти наверное будет некое диссидентское меньшинство, которое откажется приносить какие бы то ни было жертвы. Если в группе имеется хоть один эгоистичный бунтовщик, готовый эксплуатировать альтруизм остальных ее членов, то он, по определению, имеет больше шансов выжить и оставить потомство, чем другие. Каждый из его потомков будет наследовать его эгоистичные черты. После нескольких поколений такого естественного отбора “альтруистичная группа” будет наводнена эгоистичными индивидуумами и станет неотличимой от эгоистичной группы. Даже допустив изначальное существование чисто альтруистичных групп без единого бунтовщика, что маловероятно само по себе, очень трудно представить, каким образом можно предотвратить миграцию эгоистичных особей из соседних эгоистичных групп и “загрязнение” ими – путем скрещиваний – альтруистичных групп.

Сторонник теории индивидуального отбора согласится допустить, что группы действительно вымирают и что вымирание или сохранение данной группы может зависеть от поведения ее членов. Он может даже допустить, что если бы члены данной группы обладали даром предвидения, они могли бы понять, что в отдаленной перспективе им самим выгоднее всего обуздать свою эгоистичную жадность, с тем чтобы избежать уничтожения всей группы. Сколько раз в недалеком прошлом надо было повторять это английскому рабочему классу. Но вымирание группы – процесс медленный по сравнению с чрезвычайно оживленной конкуренцией на уровне индивидуумов. Даже в то время, пока данная группа медленно и неотвратимо катится под откос, эгоистичные индивидуумы достигают кратковременного процветания за счет альтруистов. Граждане Британии могут быть наделены способностью к предвидению или лишены ее, но эволюция слепа к будущему.

Несмотря на то, что теория группового отбора в настоящее время не пользуется поддержкой среди тех профессиональных биологов, которые разбираются в эволюции, интуитивно она весьма привлекательна. Уже не одно поколение зоологов, выйдя из стен учебных заведений, с удивлением обнаруживает, что эта теория отнюдь не является ортодоксальной. В этом вряд ли можно винить их, поскольку в руководстве для преподавателей биологии в Англии (Nuffield biology teacher’s guide) можно прочитать: “У высших животных поведение может принять форму самоубийства индивидуума для обеспечения выживания вида”. Анонимный автор этого руководства находится в блаженном неведении о том, что он высказал нечто спорное, оказавшись в компании с одним из нобелевских лауреатов. Конрад Лоренц в своей книге “Агрессия” пишет о функциях агрессивного поведения, направленных на сохранение вида, одна из которых состоит в том, чтобы возможность размножаться имели только наиболее приспособленные особи. Это самый великолепный пример аргументации, заводящей в порочный круг, однако я хочу обратить здесь внимание на то, что идея группового отбора укоренилась очень глубоко, а поэтому Лоренц, подобно автору упомянутого выше руководства, очевидно, не отдавал себе отчета, что его утверждения идут вразрез с ортодоксальной дарвиновской теорией.

Я недавно слышал прекрасный пример того же рода в одной, в остальном превосходной, телепрограмме Би-би-си, посвященной паукам Австралии. В этой программе “эксперт” заметила, что огромное большинство молодых пауков оказывается жертвой других видов, после чего продолжила: “Возможно, это и есть их истинное предназначение, ибо для сохранения вида достаточно выживания лишь некоторого числа его представителей”.

В “Общественном договоре” Роберт Ардри использовал теорию группового отбора для объяснения всего устройства общества. Он определенно считает человека видом, отклонившимся от праведного пути животных. Ардри по крайней мере основательно изучил проблему. Его решение не соглашаться с ортодоксальной теорией принято сознательно, и это делает ему честь.

Быть может, одна из причин привлекательности теории группового отбора состоит в том, что она полностью соответствует моральным и политическим идеалам, которые разделяет большинство из нас. Каждый из нас нередко ведет себя эгоистично, но в самые свои светлые моменты мы отдаем должное тем, кто ставит на первое место благо других, и восхищаемся ими. Правда, мы не совсем четко представляем себе, сколь широко мы согласны понимать слово “другие”. Нередко альтруизм в пределах данной группы вполне совмещается с эгоизмом в отношениях между группами. На этом основан тред-юнионизм. В других случаях главный выигрыш от нашего альтруистичного самопожертвования получает государство: от молодых людей ожидают, что каждый из них должен быть готов умереть как индивидуум к вящей славе своей страны как целого. Кроме того, их побуждают убивать других индивидуумов, о которых им ничего не известно, за исключением того, что они принадлежат к другой нации. (Любопытно, что в мирное время призывы к небольшим жертвам, которые бы чуть снизили скорость повышения жизненного уровня людей, оказываются, по-видимому, менее эффективными, чем призывы пожертвовать своей жизнью в военное время.)

В последнее время наблюдается неприятие расизма и патриотизма и тенденция к тому, чтобы объектом наших братских чувств стало все человечество. Такое гуманистическое расширение нашего альтруизма приводит к интересному следствию, которое опять-таки, по-видимому, подкрепляет эволюционную идею “во благо вида”. Люди, придерживающиеся либеральных политических взглядов, которые обычно бывают самыми убежденными пропагандистами “видовой этики”, теперь нередко выражают величайшее презрение к тем, кто пошел в своем альтруизме чуть дальше, распространив его и на другие виды. Если я скажу, что меня больше интересует защита от истребления крупных китов, чем улучшение жилищных условий людей, я рискую шокировать этим некоторых своих друзей.

Убеждение, что представители твоего собственного вида заслуживают особо бережного отношения по сравнению с членами других видов, издавна глубоко укоренилось в человеке. Убить человека в мирное время считается очень серьезным преступлением. Единственное действие, на которое наша культура налагает более суровый запрет – людоедство (даже в случае поедания трупов). Однако мы с удовольствием поедаем представителей других видов. Многие из нас содрогаются от ужаса, узнав о вынесенных судом смертных приговорах, даже если это касается самых отвратительных преступников. Однако мы охотно одобряем уничтожение безо всякого суда довольно мирных животных, причиняющих нам неудобства. Более того, мы убиваем представителей других видов просто для развлечения. Человеческий зародыш, чувства которого находятся на уровне амебы, пользуется значительно большим уважением и правовой защитой, чем взрослый шимпанзе. Между тем шимпанзе чувствует и думает, а возможно – согласно новейшим экспериментальным данным – способен даже освоить некую форму человеческого языка. Но человеческий зародыш относится к нашему собственному виду и на этом основании сразу получает привилегии и права. Я не знаю, можно ли логически обосновать такую особую этику в отношении собственного вида, которую Ричард Райдер назвал “видизмом” (speciesism), более убедительно, чем расизм. Зато я знаю, что она не имеет надлежащей основы в эволюционной биологии.

Неразбериха в этических представлениях о том, на каком уровне должен кончаться альтруизм – на уровне семьи, нации, расы, вида или всего живого, – отражается, как в зеркале, в параллельной неразберихе в биологии относительно уровня, на котором следует ожидать проявлений альтруизма в соответствии с эволюционной теорией. Даже приверженец группового отбора не будет удивлен, обнаружив вражду между членами двух враждующих групп – так они, подобно членам одного профсоюза или солдатам, помогают собственной группе в борьбе за ограниченные ресурсы. Но в таком случае уместно задать вопрос, на основании чего он будет решать, какой уровень следует считать важным? Если отбор происходит на уровне отдельных групп в пределах вида или на уровне видов, то почему бы ему не действовать также и на уровне более крупных групп? Виды объединяются в роды, роды – в семейства, семейства – в отряды, а отряды – в классы. Львы и антилопы принадлежат к классу млекопитающих, как и мы с вами. Не следует ли нам поэтому ожидать, что львы должны воздерживаться от охоты на антилоп “во благо всех млекопитающих”? Безусловно, им надо было бы охотиться на птиц или рептилий, чтобы препятствовать вымиранию млекопитающих. Как быть, однако, в таком случае с необходимостью сохранения всего типа позвоночных?

Все это хорошо до тех пор, пока я, доводя свои рассуждения до абсурда, говорю о затруднениях, с которыми сталкивается теория группового отбора, но при всем при этом остается необходимым объяснить, очевидно, существующий индивидуальный альтруизм. Ардри заходит так далеко, что называет групповой отбор единственным возможным объяснением такого поведения, как “стоттинг” у газели Томсона. Эти энергичные прыжки, привлекающие внимание хищника, аналогичны крику тревоги у птиц: они, по-видимому, предостерегают других газелей от опасности, одновременно отвлекая хищника на себя. Мы обязаны дать объяснение такому поведению газели Томсона и всем сходным явлениям, и я займусь этим в последующих главах.

Но сначала я должен обосновать свое убеждение, что эволюцию лучше всего рассматривать как результат отбора, происходящего на самом нижнем уровне. На это мое убеждение сильно повлияла замечательная книга Джорджа К. Уильямса “Адаптация и естественный отбор”. Предвосхищением главной идеи, которой я воспользовался, была доктрина Августа Вейсмана, сформулированная им на пороге XX века, то есть в догенную эпоху, – доктрина о “непрерывности зародышевой плазмы”. Я буду настаивать, что основной единицей отбора, представляющей поэтому самостоятельный интерес, служит не вид, не группа и даже, строго говоря, не индивидуум. Основная единица – это ген, единица наследственности[5]. Некоторым биологам в первый момент такое утверждение покажется экстремальным. Я надеюсь, что, когда они поймут, какой я в него вкладываю смысл, они согласятся, что оно в сущности ортодоксально, хотя и выражено необычным образом. Изложение моих представлений потребует времени, и нам придется начать все с самого начала – с возникновения самой жизни.

 

 

Глава 2. Репликаторы

Вначале была простота. Объяснить, как возникла даже простая Вселенная, довольно трудно. Мне кажется, вряд ли кто-нибудь станет возражать, что было бы еще труднее объяснить внезапное возникновение во всей его полноте такого сложного упорядоченного феномена, как жизнь, или существа, способного создавать живое. Дарвиновская теория эволюции путем естественного отбора убедительна, потому что указывает нам, каким образом простое могло превращаться в сложное, как неупорядоченные ансамбли атомов могли группироваться во все более сложные структуры, пока в конечном счете это не привело к созданию человека. Дарвин нашел решение (единственное приемлемое из предложенных до сих пор) фундаментальной проблемы – нашего существования. Я попытаюсь объяснить эту великую теорию в более общем плане, чем это принято, начав с периода, предшествовавшего началу самой эволюции.

Дарвиновское “выживание наиболее приспособленных” – это на самом деле частный случай более общего закона выживания стабильного. Мир населен стабильными объектами. Стабильный объект – это совокупность атомов, которая достаточно стабильна или обыкновенна, чтобы заслуживать собственного имени. Это может быть единственное в своем роде собрание атомов, как, например, Маттерхорн, существующий достаточно давно, чтобы имело смысл дать ему название. Или это может быть некий класс объектов, таких как капли дождя, возникающие с достаточно высокой скоростью, чтобы заслуживать общего названия, несмотря на то, что каждая отдельная капля живет очень недолго. Все объекты, которые мы видим вокруг себя и сущность которых нам хотелось бы объяснить (горы, галактики, морские волны), представляют собой в большей или меньшей степени стабильные атомные структуры. Мыльные пузыри стремятся принять сферическую форму: это стабильная конфигурация для тонких пленок, наполненных газом. В космическом корабле стабильное состояние воды – это также сферические капли, но на Земле под действием гравитации вода в стабильном состоянии образует плоскую горизонтальную поверхность. Кристаллы поваренной соли стремятся принять кубическую форму, потому что при этом достигается стабильная упаковка ионов натрия вместе с ионами хлора. На Солнце самые простые атомы – атомы водорода – сливаются, образуя атомы гелия, потому что в преобладающих там условиях гелий более стабилен. Другие, еще более сложные атомы постоянно образуются в звездах по всей Вселенной. Их образование происходило и в момент Большого взрыва, который, согласно господствующей теории, положил начало возникновению Вселенной. Именно таков изначальный источник элементов, из которых построен наш мир.

Иногда при столкновении друг с другом атомы соединяются в результате химических реакций, образуя более или менее стабильные молекулы. Такие молекулы могут иметь очень большие размеры. Кристалл, подобный алмазу, можно считать отдельной молекулой, в данном случае вполне стабильной, но одновременно и очень простой, поскольку ее внутренняя атомная структура повторяется бесконечное число раз. У современных живых организмов имеются другие большие, чрезвычайно сложные молекулы, причем их сложность проявляется на нескольких разных уровнях. Содержащийся в крови человека гемоглобин представляет собой типичную белковую молекулу. Она построена из цепей более мелких молекул – аминокислот, каждая из которых состоит из нескольких десятков атомов, расположенных строго определенным образом. В молекуле гемоглобина содержится 574 аминокислоты. Они собраны в четыре цепи, перекрученные между собой и образующие невероятно сложную трехмерную глобулярную структуру. Модель молекулы гемоглобина напоминает густой куст боярышника. Но в отличие от настоящего боярышника такой “куст” имеет не какую-то случайную и не очень четкую, а строго определенную неизменную структуру, повторяющуюся в организме человека без всяких отклонений в среднем 6 1020 раз. Точная форма молекулы белка, такого, как гемоглобин, стабильна в том смысле, что две цепи, образованные одними и теми же последовательностями аминокислот, всегда, подобно двум пружинам, будут принимать совершенно одинаковую трехмерную конфигурацию. Одни гемоглобиновые “кусты” образуются в нашем организме в этой “предпочитаемой” ими форме со скоростью 4 1014 в секунду, а другие такие “кусты” столь же быстро разрушаются.

Гемоглобин – одна из ныне существующих молекул, использованная мной для иллюстрации принципа, согласно которому атомы обычно образуют стабильные структуры. Здесь важно указать, что до возникновения жизни на Земле, возможно, происходила какая-то рудиментарная эволюция молекул с помощью обычных физических и химических процессов. Нет нужды придумывать какую-то предначертанность, цель или направленность. Если группа атомов в присутствии источника энергии образует некую стабильную структуру, она имеет тенденцию сохранять эту структуру. Самая ранняя форма естественного отбора состояла просто в отборе стабильных форм и отбрасывании нестабильных. В этом нет ничего таинственного. Это должно было произойти по определению.

Конечно, отсюда не следует, что существование столь сложных объектов, как человек, можно объяснить на основе одних только таких принципов. Бесполезно, отсчитав в сосуд нужное число атомов, встряхивать их с помощью внешнего источника энергии до тех пор, пока они не сложатся в нужную структуру и из сосуда не выпрыгнет Адам! Таким способом можно получить молекулу, состоящую из нескольких десятков атомов, но организм человека содержит 1026 атомов. Чтобы “изготовить” человека, вам пришлось бы поработать со своим биохимическим шейкером так долго, что возраст всей Вселенной показался бы одним мгновением, и даже при этом вы не достигли бы успеха. Вот здесь-то и приходит на помощь теория Дарвина в самой простой ее форме. Эта теория выступает на сцену в тот момент, когда медленное построение молекул со сцены уходит.

Представляемое здесь описание возникновения жизни не может не быть спекулятивным. По определению, никто не мог видеть, как это происходило. Существует несколько соперничающих теорий, но у всех у них есть некоторые общие черты. Описание, вероятно, не слишком далеко от истины[6].

Нам неизвестно, какое химическое сырье имелось на Земле в изобилии до возникновения жизни, однако среди возможных химических веществ, по всей вероятности, были вода, двуокись углерода, метан и аммиак – все это простые соединения, имеющиеся по крайней мере на некоторых других планетах Солнечной системы. Химики пытались имитировать химические условия, существовавшие на юной Земле. Они помещали эти простые соединения в сосуд и подавали энергию, например ультрафиолетовое излучение или электрические разряды, имитирующие молнии. После нескольких недель такого воздействия в сосуде обычно обнаруживали нечто интересное: жидкий коричневатый бульон, содержащий множество молекул, более сложных, чем первоначально помещенные в сосуд. В частности, в нем находили аминокислоты – блоки, из которых построены белки, составляющие один из двух главных классов биологических молекул. До проведения этих экспериментов обнаружение природных аминокислот рассматривалось как свидетельство присутствия жизни. Если бы аминокислоты были обнаружены, скажем, на Марсе, наличие на этой планете жизни почти не вызывало бы сомнений. Теперь, однако, их существование должно означать лишь содержание в атмосфере Марса нескольких простых газов, а также наличие на этой планете вулканической активности, солнечного света или грозовых разрядов. Сравнительно недавно при воссоздании в лабораторных условиях химического состояния Земли до возникновения на ней жизни были получены органические вещества, называемые пуринами и пиримидинами, из которых построена генетическая молекула – сама ДНК.

Процессы, аналогичные описанным, должны были дать начало “первичному бульону”, из которого, как полагают биологи и химики, состояли моря 3000–4000 миллионов лет назад. Органические вещества стали концентрироваться в отдельных участках, вероятно в высыхающей пене по берегам, или же в крошечных суспендированных капельках. В результате дальнейшего воздействия энергии, такой, как ультрафиолетовое излучение Солнца, они объединялись в более крупные молекулы. В наши дни большие органические молекулы не могли бы сохраняться достаточно долго, чтобы оказаться замеченными: они были бы быстро поглощены или разрушены бактериями или другими живыми существами. Но бактерии и прочие организмы появились гораздо позднее, а в то далекое время большие органические молекулы могли в целости и сохранности дрейфовать в густеющем бульоне.

В какой-то момент случайно образовалась замечательная молекула. Мы назовем ее репликатором. Это не обязательно была самая большая или самая сложная из всех существовавших тогда молекул, но она обладала необыкновенным свойством – способностью создавать копии самой себя. Может показаться, что такое событие вряд ли могло произойти. И в самом деле, оно было крайне маловероятным. В масштабах времени, отпущенного каждому человеку, события, вероятность которых так мала, следует считать практически невозможными. Именно поэтому вам никогда не удастся получить большой выигрыш в футбольном тотализаторе. Но мы, люди, в своих оценках вероятного и невероятного не привыкли оперировать сотнями миллионов лет. Если бы вы заполняли купоны тотализатора еженедельно на протяжении ста миллионов лет, вы, по всей вероятности, сорвали бы несколько больших кушей.

На самом деле вообразить молекулу, которая создает собственные копии, вовсе не так трудно, как это кажется сначала, да и возникнуть она должна всего один раз. Представьте себе репликатор как форму для отливки или матрицу, как большую молекулу, состоящую из сложной цепи разного рода более мелких молекул, играющих роль строительных блоков. Эти блоки в изобилии содержались в бульоне, окружавшем репликатор. Допустим теперь, что каждый строительный блок обладал сродством к другим блокам одного с ним рода. В таком случае всякий раз, когда какой-нибудь строительный блок, находившийся в бульоне, оказывался возле той части репликатора, к которому у него было сродство, он там и оставался. Прикрепляющиеся таким образом строительные блоки автоматически располагались в той же последовательности, что и блоки репликатора. Поэтому легко представить себе, что они соединялись друг с другом, образуя стабильную цепь, подобно тому, как это происходило при образовании самого репликатора. Этот процесс может продолжаться в форме постепенного наложения одного слоя на другой. Именно так образуются кристаллы. Но две цепи могут и разойтись, и в таком случае получатся два репликатора, каждый из которых будет продолжать создавать копии.

Более сложная возможность заключается в том, что каждый строительный блок обладает сродством не к таким же, а к другого рода блокам, причем это сродство взаимно. В таком случае репликатор выступает в качестве матрицы для образования не идентичной копии, а некоего “негатива”, который в свою очередь вновь создает копию исходного “позитива”. Для наших целей не имеет значения, относился ли первоначальный процесс репликации к типу “позитив – негатив” или “позитив – позитив”, хотя следует отметить, что современные эквиваленты первого репликатора – молекулы ДНК – реплицируются по типу “позитив – негатив”. Важно то, что в мир пришла новая форма “стабильности”. Прежде особого обилия сложных молекул какого-то одного типа в бульоне, по всей вероятности, не было, потому что образование молекул каждого типа зависело от случайного соединения строительных блоков в ту или иную определенную конфигурацию. С возникновением репликатора его копии, вероятно, быстро распространялись в морях, пока запасы молекул, составляющих мелкие строительные блоки, не начали истощаться и другие крупные молекулы не стали образовываться все реже. Итак, мы, кажется, получили обширную популяцию идентичных копий. Однако теперь следует сказать об одном важном свойстве любого процесса копирования: оно несовершенно. Случаются ошибки. Я надеюсь, что в этой книге нет опечаток, но при внимательном чтении одну-две вы, возможно, обнаружите. Они, вероятно, не приводят к серьезным искажениям текста, потому что это ошибки “первого поколения”. Представьте себе, однако, что происходило в те времена, когда книгопечатания еще не было и такие книги, как Библия, переписывали от руки. Все переписчики, как бы они ни были внимательны, неизбежно делали сколько-то ошибок, а некоторые даже были склонны сознательно вносить небольшие “улучшения”. Если бы все они переписывали с одного оригинала, искажения смысла были бы незначительными. Но как только копии начинают делать с других копий, которые в свое время также были сделаны с копий, ошибки накапливаются, и дело принимает серьезный оборот. Мы считаем, что ошибки при копировании – это плохо, и, если речь идет об исторических документах, трудно представить себе примеры, когда ошибки можно было бы назвать улучшениями. Однако когда при переводе Септуагинты неверно перевели еврейское слово, означающее “молодая женщина”, греческим словом, означающим “девственница”, в результате чего получилось пророчество “Се, Дева во чреве примет и родит Сына”[7], то можно по меньшей мере сказать, что это положило начало чему-то значительному. Во всяком случае, как мы увидим, ошибки, допускаемые биологическими репликаторами при копировании, могут привести к реальным улучшениям, и для прогрессивной эволюции жизни возникновение некоторого количества ошибок имело существенное значение. Мы не знаем, насколько точно исходные молекулы репликатора создавали свои копии. Их современные потомки, молекулы ДНК, удивительно добросовестны по сравнению с большинством точнейших механизмов копирования, созданных человеком, но даже они время от времени допускают ошибки, и в итоге именно эти ошибки делают возможной эволюцию. Вероятно, исходные репликаторы допускали гораздо больше ошибок, но в любом случае мы можем быть уверены, что ошибки совершались и что они были кумулятивными.

По мере того, как возникали и множились ошибки копирования, первобытный бульон наполнялся не идентичными репликами, а реплицирующимися молекулами нескольких разных типов, “происходивших” от одного и того же предка. Были ли некоторые типы более многочисленны, чем другие? Почти наверное да. Одни типы несомненно изначально обладали большей стабильностью, чем другие. Среди уже образовавшихся молекул вероятность распада для одних была ниже, чем для других. Молекул первого типа в бульоне становилось относительно больше не только потому, что это логически следует из их “долголетия”, но также потому, что они располагали большим временем для самокопирования. Поэтому долгоживущие репликаторы оказывались более многочисленными и, при прочих равных условиях, в популяции макромолекул должно было возникнуть “эволюционное направление” в сторону большей продолжительности жизни.

Однако прочие условия, по всей вероятности, не были равными, и еще одним свойством одного из типов репликатора, которое должно было играть даже более важную роль в его распространении в популяции, оказалась скорость репликации, или “плодовитость”. Если молекулы репликатора типа А создают свои копии в среднем один раз в неделю, а типа B – один раз в час, то нетрудно понять, что очень скоро число молекул типа В сильно превысит число молекул типа A, даже если молекулы А “живут” гораздо дольше, чем В. Поэтому в бульоне, по-видимому, существовало “эволюционное направление”, ведущее к более высокой “плодовитости” молекул. Третий признак молекул-репликаторов, который должен был сохраняться отбором, – точность репликации. Если молекулы типа X и типа Y выживают в течение некоторого времени и реплицируются с постоянной скоростью, причем молекулы X совершают по одной ошибке при каждой десятой репликации, а молекулы Y – при каждой сотой, то очевидно, что численность молекул Y будет возрастать. Контингент молекул X в популяции теряет не только самих “заблудших детей”, но и всех их фактических или потенциальных потомков.

Тем, кто уже знает кое-что об эволюции, последнее замечание может показаться несколько парадоксальным. Можем ли мы примирить представление об ошибках копирования как о важной предпосылке, обеспечивающей возможность эволюции, с утверждением, что естественный отбор благоприятствует точности копирования? Ответ состоит в том, что хотя мы воспринимаем, пусть не вполне четко, эволюцию как нечто хорошее (тем более что сами являемся ее продуктами), в действительности ничто на свете не “хочет” эволюционировать. Эволюция просто происходит, хотим мы этого или нет, несмотря на все усилия репликаторов (а в наши дни – генов) предотвратить ее. Жак Люсьен Моно очень четко сказал об этом в своей Спенсеровской лекции, предварительно саркастически заметив: “У эволюционной теории имеется еще один любопытный аспект – каждый полагает, что он понимает ее”.

Вернемся к первичному бульону. По-видимому, его стали заселять стабильные разновидности молекул: стабильные в том смысле, что отдельные молекулы либо сохранялись в течение длительного времени, либо быстро реплицировались, либо реплицировались очень точно. Эволюционные направления, ведущие к стабильности этих трех типов, выражались в следующем: если бы вы взяли пробы бульона в два разных момента времени, то вторая проба содержала бы больше типов с высокими продолжительностью жизни, плодовитостью и точностью копирования. Это, в сущности, то, что имеет в виду биолог, говоря об эволюции применительно к живым организмам. И совершается она с помощью того же самого механизма – естественного отбора.

Должны ли мы в таком случае называть эти первоначальные молекулы-репликаторы “живыми”? Да какая разница! Допустим, я скажу: “Величайшим из когда-либо живших на земле людей был Дарвин”, а вы возразите: “Нет, Ньютон”, но я надеюсь, что наш спор на этом прекратится. Мысль моя заключается в том, что как бы ни разрешился наш спор, ни один важный вывод от этого не изменится. В истории жизни и свершений Ньютона и Дарвина не произойдет никаких изменений независимо от того, будем мы называть их “великими” или нет. Точно так же история молекул-репликаторов, возможно, протекала примерно так, как я это описываю, независимо от того, будем ли мы называть их “живыми”. Причина извечных мучений человечества заключается в неспособности слишком многих из нас понять, что слова – это лишь орудия, существующие для того, чтобы ими пользоваться, и что если в словаре имеется такое слово, как “живой”, то из этого вовсе не следует, что оно обозначает нечто определенное в реальном мире. Будем мы называть первичные репликаторы живыми или нет, они были нашими предками, нашими родоначальниками.

Следующее важное звено в наших рассуждениях, на которое делал упор сам Дарвин (хотя он имел в виду растения и животных), – это конкуренция. Первичный бульон не мог обеспечить существование бесконечного числа молекул-репликаторов. Не говоря уже о конечных размерах Земли, важную роль должны были играть другие лимитирующие факторы. Описывая репликатор как матрицу или форму для отливки, мы предполагали, что он был погружен в бульон, богатый мелкими строительными блоками, то есть молекулами, необходимыми для создания копий. Но с возрастанием численности репликаторов эти блоки стали использоваться с такой скоростью, что очень быстро оказались дефицитным и дорогостоящим ресурсом. Репликаторы разных типов или штаммов конкурировали за них. Мы рассматривали факторы, которые могли участвовать в увеличении численности репликаторов предпочтительных типов. Теперь мы видим, что репликаторы, которым отбор благоприятствовал в меньшей степени, должны были действительно стать в результате отбора менее многочисленными и в конечном счете многие их линии должны были вымереть. Между разными типами репликаторов шла борьба за существование. Они не знали, что они борются, и не беспокоились об этом. Борьба шла без недобрых чувств, да и в сущности вообще безо всяких чувств. Но они боролись в том смысле, что любая ошибка копирования, в результате которой создавался новый, более высокий уровень стабильности или новый способ, позволяющий снизить стабильность противников, автоматически сохранялась и размножалась. Процесс совершенствования был кумулятивным. Способы повышения собственной стабильности или снижения стабильности противников становились более изощренными и эффективными. Некоторые из репликаторов могли даже “открыть” химический способ разрушения молекул противников и использовать освобождающиеся при этом строительные блоки для создания собственных копий. Такие протохищники одновременно получали пищу и устраняли конкурентов. Другие репликаторы, вероятно, открыли способ защитить себя химически или физически, отгородившись белковой стенкой. Возможно, именно так возникли первые живые клетки. Репликаторы стали не просто существовать, но и строить для себя некие контейнеры, носители, обеспечивающие им непрерывное существование. При этом выжили репликаторы, сумевшие построить для себя машины выживания, в которых можно было существовать. Первые машины выживания, вероятно, состояли всего лишь из защитной оболочки. Однако обеспечивать себе возможность существования становилось все труднее, по мере того как появлялись новые противники, обладавшие более совершенными и эффективными машинами выживания. Машины увеличивались в размерах и совершенствовались, причем процесс этот носил кумулятивный и прогрессивный характер.

Должен ли был существовать какой-то предел постепенному совершенствованию способов и материальных средств, использовавшихся репликаторами для продолжения собственного существования на свете? Времени для совершенствования, очевидно, было предостаточно. А какие фантастические механизмы самосохранения принесут грядущие тысячелетия? Какова судьба древних репликаторов теперь, спустя 4 109 лет? Они не вымерли, ибо они – непревзойденные мастера в искусстве выживания. Но не надо искать их в океане, они давно перестали свободно и непринужденно парить в его водах. Теперь они собраны в огромные колонии и находятся в полной безопасности в гигантских неуклюжих роботах[8], отгороженные от внешнего мира, общаясь с ним извилистыми непрямыми путями и воздействуя на него с помощью дистанционного управления. Они присутствуют в вас и во мне. Они создали нас, наши души и тела, и единственный смысл нашего существования – их сохранение. Они прошли длинный путь, эти репликаторы. Теперь они существуют под названием генов, а мы служим для них машинами выживания.

 

 

Глава 3. Бессмертные спирали

Мы представляем собой машины выживания, но “мы” – это не только люди. В это “мы” входят все животные, растения, бактерии и вирусы. Подсчитать общее число всех существующих на земном шаре машин выживания очень трудно. Нам неизвестно даже число видов организмов. Согласно оценкам, число ныне живущих видов одних лишь насекомых достигает примерно трех миллионов, а число отдельных особей, возможно, составляет 1018.

Разные типы машин выживания, по-видимому, сильно различаются как внешне, так и по внутреннему строению. Осьминог ничем не похож на мышь, и оба они сильно отличаются от дуба. Между тем по основному химическому составу они довольно сходны. В частности, имеющиеся у них репликаторы, то есть гены, представлены молекулами, которые в своей основе одинаковы у всех живых существ – от бактерий до слонов. Все мы служим машинами выживания для репликаторов одного и того же типа – молекул вещества, называемого ДНК, но существует много различных способов жить в этом мире, и репликаторы создали целый спектр машин выживания, позволяющих воспользоваться этими способами. Обезьяна служит машиной для сохранения генов на деревьях, рыба – для сохранения их в воде. Существует даже маленький червячок, сохраняющий гены в кружочках, подставляемых в Германии под кружки с пивом. Пути ДНК неисповедимы.

Для простоты я представляю дело так, будто нынешние гены в общем почти то же самое, что и первые репликаторы, возникшие в первобытном бульоне. На самом деле это может оказаться неверным, хотя в данном случае и неважным. Исходными репликаторами могли быть молекулы, родственные ДНК, или же молекулы совершенно иного типа. Во втором случае мы могли бы допустить, что на какой-то более поздней стадии ДНК захватила их машины выживания. Если это так, то исходные репликаторы, очевидно, были полностью уничтожены, поскольку в современных машинах выживания никаких следов от них не сохранилось. Продолжая развивать это направление, Александр Грэм Кернс-Смит высказал занятное предположение, что наши предки – первые репликаторы – были, возможно, не органическими молекулами, а неорганическими кристаллами-минералами, кусочками глины. ДНК, была ли она узурпатором или нет, сегодня, несомненно, находится у власти, если только, как я предположительно заметил в главе 11, в настоящее время не начинается новый захват власти.

Молекула ДНК представляет собой длинную цепь из строительных блоков, которыми служат небольшие молекулы – нуклеотиды. Подобно тому, как белковые молекулы – это цепи из аминокислот, ДНК – цепи из нуклеотидов. Молекула ДНК слишком мала, чтобы ее можно было увидеть, но ее точная структура была установлена с помощью остроумных косвенных методов. Она состоит из пары нуклеотидных цепей, свернутых вместе в изящную спираль – ту самую двойную спираль, “бессмертную спираль”. Нуклеотидные строительные блоки бывают только четырех типов, обозначаемых буквами А, Т, Ц и Г. Они одинаковы у всех животных и растений. Различна лишь их последовательность. Блок Ц из ДНК человека ничем не отличается от блока Ц улитки. Но последовательность строительных блоков у данного человека отличается не только от их последовательности у улитки. Она отличается также (хотя и в меньшей степени) от последовательности блоков у любого другого человека (за исключением особого случая – однояйцовых близнецов).

ДНК обитает в нашем теле. Она не сконцентрирована в какой-то одной части тела, но распределена между всеми клетками. Тело человека состоит в среднем из 1015 клеток, и, за известными исключениями, которыми мы можем пренебречь, каждая из этих клеток содержит полную копию ДНК, свойственной данному телу. Эту ДНК можно рассматривать как набор инструкций, записанных с помощью нуклеотидного алфавита – А, Т, Ц, Г – и указывающих, как должно строиться тело. Представим себе громадное здание, где в каждой комнате стоит шкаф, содержащий созданные архитектором чертежи, по которым это здание строилось. В клетке таким “шкафом” служит ядро. “Чертежи” для человеческого тела составляют 46 “томов”. У других видов число “томов” – хромосом – иное. Под микроскопом они имеют вид длинных нитей, в которых в определенном порядке расположены гены. Нелегко, да и, вероятно, даже бессмысленно, решать, где кончается один ген и начинается другой. К счастью, как мы вскоре увидим, здесь это не имеет значения.

Я воспользуюсь аналогией с чертежами, свободно чередуя метафоры со словами, обозначающими реально существующие объекты. “Том” будет фигурировать в моем тексте попеременно с хромосомой, а “лист” используется наравне с геном, хотя гены разделены менее четко, чем страницы книги. С этой метафорой мы пойдем достаточно далеко. Когда она наконец перестанет срабатывать, я введу другие метафоры. Между прочим, никакого “архитектора” не было. Содержащиеся в ДНК инструкции были собраны естественным отбором.

Молекулы ДНК выполняют две важные функции. Во-первых, они реплицируются, то есть создают копии самих себя. Такое самокопирование происходило непрерывно с тех пор как возникла жизнь, и надо сказать, что молекулы ДНК достигли в этом совершенства. Взрослый человек состоит из 1015 клеток, но в момент зачатия он представлял собой всего одну клетку, наделенную одной исходной копией “чертежей”. Эта клетка разделилась на две, причем каждая из возникших двух клеток получила собственную копию чертежей. В результате последовательных делений число клеток увеличивается до 4, 8, 16, 32 и так далее до миллиардов. При каждом делении содержащиеся в ДНК чертежи точно, практически без ошибок, копируются.

Говорить о дупликации ДНК – это полдела. Но если ДНК действительно представляют собой чертежи для построения организма, как эти планы реализуются? Как они переводятся в ткани организма? Это подводит меня ко второй важной функции ДНК. Она косвенно контролирует изготовление молекул другого вещества – белка. Гемоглобин, упоминавшийся в главе 2, – всего одна из огромного множества белковых молекул. Закодированная в ДНК информация, записанная с помощью четырехбуквенного нуклеотидного алфавита, переводится простым механическим способом на другой, аминокислотный, алфавит, которым записывается состав белковых молекул.

Казалось бы, от создания белка очень далеко до создания организма, и тем не менее это первый маленький шаг в нужном направлении. Белки не только составляют большую часть физической структуры тела. Они осуществляют также чуткий контроль надо всеми химическими процессами, происходящими внутри клетки, избирательно включая и выключая их в строго определенные сроки и в строго определенных местах. Чтобы установить, как именно это в конечном счете приводит к развитию младенца, эмбриологам придется работать не одно десятилетие, а может быть, и несколько столетий. Однако младенец-то развивается! Гены действительно косвенно регулируют построение организмов, и влияние это одностороннее: приобретенные признаки не наследуются. Сколько бы знаний и мудрости вы ни накопили в течение жизни, ни одна их капля не перейдет к вашим детям генетическим путем. Каждое новое поколение начинает на пустом месте. Гены используют тело для того, чтобы оставаться неизменными.

Эволюционное значение того факта, что гены регулируют зародышевое развитие, состоит в следующем: гены, по крайней мере частично, обеспечивают таким образом свое выживание в будущем, поскольку их выживание зависит от эффективности организмов, в которых они живут и которые были построены с их помощью. Когда-то в прошлом естественный отбор состоял в дифференциальном выживании свободно паривших в первичном бульоне. Естественный отбор благоприятствует репликаторам, которые умеют строить машины выживания, – генам, достигшим совершенства в искусстве регулирования зародышевого развития. В этом смысле репликаторы не стали действовать более сознательно или целеустремленно, чем когда-либо прежде. Те же старые процессы автоматического отбора между соперничающими молекулами по критериям долговечности, плодовитости и точности копирования продолжаются так же слепо и так же неуклонно, как это было в далеком прошлом. Гены не наделены даром предвидения. Они не заглядывают вперед. Гены просто существуют (причем одни преуспевают в этом больше, чем другие) – и этим все сказано. Однако качества, детерминирующие долговечность и плодовитость, теперь уже не столь просты, как прежде. Далеко не столь просты.

За последние шестьсот миллионов лет или около того репликаторы достигли замечательных успехов в технологии создания таких машин выживания, как мышцы, сердце и глаз (несколько раз независимо возникавших в процессе эволюции). До этого они радикально изменили фундаментальные черты своего образа жизни в качестве репликаторов.

Первое, что нам следует усвоить относительно современного репликатора, – это то, что он очень общителен. Машина выживания содержит не один, а многие тысячи генов. Построение организма – мероприятие кооперативное, причем внутренние связи в нем так сложны и запутанны, что отделить вклад одного гена от вклада другого почти невозможно[9]. Данный ген может оказывать самое разнообразное воздействие на совершенно разные части тела. Данная часть тела может находиться под влиянием многих генов, и эффект каждого отдельного гена зависит от его взаимодействия со многими другими генами. Некоторые гены выступают в роли главных генов, контролирующих действие кластера других генов. Вновь воспользовавшись нашей аналогией, можно сказать, что каждый данный лист чертежей имеет отношение ко многим разным частям здания, и каждый лист приобретает смысл лишь при условии перекрестных ссылок на многие другие листы.

Эта сложная взаимозависимость генов может вызвать резонный вопрос: а почему не прибегнуть к какому-нибудь собирательному названию вроде “генного комплекса”? Во многих случаях это действительно было бы удачным решением. Но если подойти к проблеме с другой стороны, то представляется также разумным рассматривать генный комплекс как совокупность дискретных репликаторов или генов. Такой подход связан с явлением пола. При половом размножении гены смешиваются и перетасовываются. Это означает, что каждое отдельное тело представляет собой лишь временное транспортное средство для короткоживущей комбинации генов. Данная комбинация генов, то есть каждый отдельный индивидуум, может быть короткоживущим, но сами гены потенциально являются долгоживущими. В ряду поколений их пути постоянно пересекаются и расходятся. Отдельный ген можно рассматривать как единицу, продолжающую существовать в ряду многочисленных последовательных индивидуальных тел. Это центральное положение, развиваемое в настоящей главе, и именно с ним некоторые из моих самых уважаемых коллег упрямо отказываются соглашаться, так что читатели должны простить мне, если им покажется, что я разрабатываю его слишком тщательно. Прежде всего я должен вкратце изложить основы явления пола.

Как было сказано выше, чертежи для построения тела человека составляют 46 томов. На самом деле это сверхупрощение. Правда довольно причудлива. Эти 46 хромосом состоят из 23 пар хромосом. Можно было бы сказать, что в ядре каждой клетки хранятся два альтернативных набора по 23 тома чертежей в каждом. Назовите их том 1а и том 1б, том 2а и том 2б и так далее до тома 23а и тома 23б. Конечно, цифры, используемые мною для обозначения томов, а затем листов, совершенно произвольны.

Мы получаем каждую хромосому в целости и сохранности от одного из наших двух родителей, в семеннике или яичнике которых она была собрана. Тома 1а, 2а, 3а, … поступают, скажем, от отца. Тома 1б, 2б, 3б, … поступают от матери. Это очень трудно осуществить на практике, но теоретически можно разглядеть под микроскопом в любой из клеток человека 46 хромосом и отделить 23 материнские хромосомы от 23 отцовских.

Парные хромосомы не проводят всю свою жизнь, физически соприкасаясь или даже находясь поблизости одна от другой. Почему в таком случае их называют парными? А потому, что каждый том, полученный от отца, можно считать, лист за листом, прямой альтернативой одного определенного тома, полученного от матери. Например, 6-й лист тома 13а и 6-й лист тома 13б могут касаться цвета глаз (возможно, в одном значится: “голубые”, в другом – “карие”).

Иногда эти два альтернативных листа идентичны, а иногда, как в примере с цветом глаз, они различаются. Что же делает тело, если они дают противоречивые “рекомендации”? Решения могут быть разными. Иногда одна инструкция перевешивает другую. Если это касается цвета глаз у человека, то глаза будут карие: инструкции, детерминирующие голубые глаза, при построении тела останутся без внимания, хотя это не препятствует их передаче последующим поколениям. Ген, который игнорируется, называется рецессивным, а противостоящий ему ген – доминантным. Ген карих глаз доминирует над геном голубых глаз. Глаза человека будут голубыми только в том случае, если обе копии соответствующего листа единодушно рекомендуют голубые глаза. Гораздо чаще в тех случаях, когда два альтернативных гена не идентичны, это приводит к компромиссу – тело создается по промежуточному или даже совершенно иному плану.

Если два гена, подобно генам карих и голубых глаз, – конкуренты, стремящиеся занять одно и то же место в данной хромосоме, их называют аллельными друг другу, или аллелями. Для наших целей слово “аллель” – синоним слова “соперник”. Представим себе том чертежей в виде скоросшивателя, так что листы можно вынимать и менять местами. В каждом томе 13 должен быть лист 6, но существует несколько возможных листов 6, которые могли бы оказаться в скоросшивателе между листами 5 и 7. Один из них диктует “голубые глаза”, другой возможный лист – “карие глаза”. В данной популяции могут быть и другие варианты, которые диктуют другие глаза, например зеленые. Так, место листа 6 в 13-х хромосомах, разбросанных по всей популяции, может занимать любой из полудюжины альтернативных аллелей. У каждого же данного человека имеется только две хромосомы, соответствующие тому 13. Поэтому в месте, отведенном листу 6, у него может быть максимум два аллеля. Это могут быть две копии одного и того же аллеля, как у голубоглазого индивидуума, или же любые два аллеля из полудюжины альтернатив, имеющихся в популяции в целом.

Конечно, человек не может в буквальном смысле слова пойти и выбрать себе гены из полного генофонда данной популяции. В любой данный момент гены связаны внутри отдельных машин выживания. Наши гены выдаются нам в момент зачатия, и мы ничего не можем в них изменить. Тем не менее в известном смысле гены данной популяции можно в конечном счете рассматривать в общем как некий генофонд. Это слово используется генетиками в качестве специального термина. Генофонд – полезная абстракция, потому что при половом размножении гены перемешиваются, хотя и строго организованным способом. В частности, как мы сейчас увидим, что-то сходное с выниманием листов и пачек листов из скоросшивателя и их обменом происходит на самом деле.

Я описал обычное деление клетки на две новые клетки, каждая из которых получает полную копию всех 46 хромосом. Такое нормальное клеточное деление называют митозом. Существует, однако, клеточное деление другого типа, называемое мейозом. Оно происходит только при образовании половых клеток – сперматозоидов и яйцеклеток. Сперматозоиды и яйцеклетки – единственные среди клеток человека, содержащие вместо 46 только по 23 хромосомы. Это ровно половина от 46, что удобно, поскольку, сливаясь в процессе оплодотворения, они дают начало новому индивидууму с тем же числом хромосом.

Сперматозоид с его 23 хромосомами образуется в результате мейотического деления одной 46-хромосомной клетки семенника. Какие именно 23 хромосомы попадут в каждый данный сперматозоид? Очень важно, чтобы он получил не просто любые 23 из прежних хромосом: в нем не должно оказаться два экземпляра, например, тома 13 и ни одного – тома 17. Теоретически возможно, чтобы индивидуум наделил один из своих сперматозоидов целиком хромосомами материнского происхождения, то есть томами 1б, 2б, 3б, …, 23б. В случае подобного маловероятного события ребенок, зачатый с участием такого сперматозоида, унаследует половину своих генов от бабки с материнской стороны и не получит ни одного гена от деда со стороны отца. На самом деле такого грубого распределения на уровне целых хромосом не происходит. Все обстоит сложнее. Вспомните, что тома (хромосомы) мы представляем себе в виде скоросшивателей. На самом деле при образовании сперматозоида отдельные листы (или скорее пачки листов) из одного тома отделяются и обмениваются местами с соответствующими пачками из альтернативного тома. Так, например, у данного сперматозоида том 1 может содержать первые 65 листов из тома 1а и листы с 66-го и до последнего – из тома 1б. Такой же смешанный состав могут иметь остальные 22 тома этого сперматозоида. Поэтому каждый сперматозоид, образуемый данным индивидуумом, отличается от остальных, несмотря на то, что все они собрали свои 23 хромосомы из кусочков одного и того же 46-хромосомного набора. Подобным же образом в яичниках формируются яйцеклетки, каждая из которых чем-то отличается от других.

Механика этого смешивания в реальной жизни хорошо изучена. В процессе образования сперматозоида (или яйцеклетки) отдельные участки каждой отцовской хромосомы физически отделяются от других и обмениваются местами с точно соответствующими им участками материнской хромосомы. (Не забывайте, что мы говорим о хромосомах, которые индивидуум, давший сперматозоид, первоначально получил от своих родителей, то есть от деда и бабки с отцовской стороны ребенка, зачатого при участии этого сперматозоида.) Процесс обмена участками хромосомы называют кроссинговером. Он играет очень важную роль во всем, что составляет содержание настоящей книги. Это означает, что если вы стали бы рассматривать под микроскопом один из собственных сперматозоидов (или яйцеклетку, если вы женщина), было бы пустой тратой времени пытаться идентифицировать хромосомы, первоначально полученные от отца и полученные от матери. (Этим они заметно отличаются от хромосом обычных клеток тела.) Каждая отдельная хромосома сперматозоида представляет собой как бы лоскутное одеяло или мозаику из материнских и отцовских генов.

Здесь принятая нами для генов метафора с листами начинает давать сбой. В скоросшивателе листы можно вставлять, вынимать или менять местами, но нельзя проделывать это с частями листа. Между тем генный комплекс – это всего лишь длинная низка нуклеотидов, вовсе не разделенная на четко обособленные листы. Разумеется, существуют специальные символы, обозначающие начало и конец инструкции для синтеза белковой цепи. Эти старт-сигнал и стоп-сигнал записаны с помощью того же четырехбуквенного алфавита, что и информация для построения белка. Между двумя такими знаками препинания записаны закодированные инструкции для синтеза одного белка. Если угодно, ген можно определить как последовательность нуклеотидов, расположенных между старт-сигналом и стоп-сигналом и кодирующих одну белковую цепь. Для такой единицы был предложен термин цистрон, и некоторые люди употребляют слова “ген” и “цистрон” на равных правах. Однако кроссинговер не считается с границами между цистронами. Разрывы могут возникать как в пределах отдельных цистронов, так и между ними, как если бы чертежи были сделаны не на отдельных листах, а на 46 рулонах тиккерной ленты. Длина цистрона не фиксирована. Установить, где кончается один цистрон и начинается другой, можно, только считывая символы на ленте и следя за появлением символов стоп- и старт-сигналов. Кроссинговер состоит в том, что из соответствующих одна другой материнской и отцовской лент вырезаются и обмениваются друг с другом соответствующие участки, независимо от того, что на них записано.

В заглавии этой книги слово “ген” означает не единичный цистрон, а нечто более тонкое. Мое определение не всем придется по вкусу, однако общепринятого определения гена не существует. Даже если бы такое определение имелось, его, как и всякое другое, не следовало бы считать незыблемым. Мы можем определить то или иное слово в соответствии с конкретными целями при условии, что определение будет ясным и недвусмысленным. Я хочу воспользоваться определением, принадлежащим Джорджу К. Уильямсу: ген – любая порция хромосомного материала, сохраняющаяся на протяжении достаточного числа поколений, чтобы служить единицей естественного отбора[10]. Пользуясь терминами из предыдущей главы, определим ген как репликатор с высокой точностью копирования. Точность копирования означает то же самое, что и выражение “долговечность в форме копий”, я сведу это просто к долговечности. Такое определение потребует некоторого обоснования.

При любом определении ген должен составлять часть какой-либо хромосомы. Вопрос в величине этой части – сколько в нее входит тиккерной ленты? Представим себе любую последовательность примыкающих друг к другу кодовых букв на ленте. Назовем эту последовательность генетической единицей. Это может быть последовательность всего из десяти букв в пределах одного цистрона, или последовательность из восьми цистронов. Она может начаться и кончиться в середине цистрона. Она будет перекрываться с другими генетическими единицами. В нее будут входить более мелкие единицы, а сама она будет частью более крупных единиц. Независимо от того, будет ли она длинной или короткой, для наших целей она представляет собой то, что мы называем генетической единицей. Это просто отрезок хромосомы, никак не отграниченный от остальной хромосомы.

Здесь мы подходим к важному моменту. Чем короче данная генетическая единица, тем дольше – в ряду поколений – она имеет шансы выжить. В частности, тем менее вероятно, что она будет разорвана при кроссинговере. Предположим, что целая хромосома в среднем претерпевает один кроссинговер при каждом образовании сперматозоида или яйца путем мейотического деления и что этот кроссинговер может произойти в любом ее участке. Для очень большой генетической единицы, длина которой составляет, скажем, половину общей длины хромосомы, вероятность разрыва при каждом мейозе равна 50 %. Если же рассматриваемая генетическая единица соответствует 1 % общей длины хромосомы, то можно считать, что вероятность ее разрыва при каждом мейозе равна 1 %. Это означает, что такая единица может сохраняться у многих поколений потомков данного индивидуума. Длина одного цистрона составляет, по-видимому, гораздо менее 1 % длины всей хромосомы. Можно ожидать, что даже группа из нескольких соседних цистронов просуществует во многих поколениях, прежде чем будет разрушена кроссинговером.

Среднюю ожидаемую продолжительность жизни данной генетической единицы удобно оценивать числом поколений, которое можно перевести в число лет. Если принять за презумптивную генетическую единицу целую хромосому, то ее жизненный цикл продолжается в течение лишь одного поколения. Допустим, что это ваша хромосома 8а. Она образовалась в одном из семенников вашего отца незадолго до того, как вы были зачаты. Она не существовала никогда прежде за всю мировую историю. Она была создана в процессе перемешивания, происходящего при мейозе, постепенно образуясь из объединяющихся друг с другом участков хромосом от ваших бабки и деда с отцовской стороны. Она попала в один сперматозоид, который стал единственным в своем роде. Этот сперматозоид был одним из нескольких миллионов образующих мощную армаду малюсеньких сосудов, которые все вместе вплыли в организм вашей матери. Этот сперматозоид – единственный (если только вы не один из неидентичных близнецов) из всей этой флотилии, который проник в одну из яйцеклеток вашей матери и дал вам жизнь. Рассматриваемая генетическая единица, ваша хромосома 8а, реплицируется вместе со всем остальным вашим генетическим материалом. Теперь она существует в дуплицированном виде во всех клетках вашего тела. Но когда вы в свою очередь соберетесь стать отцом (или матерью), эта хромосома будет разрушена в процессе образования в вашем организме сперматозоидов (или яйцеклеток). Между этой хромосомой и вашей материнской хромосомой 8б произойдет обмен участками. В каждой половой клетке будет создана новая хромосома 8. Она может оказаться “лучше” или “хуже” прежней, но, если исключить возможность довольно маловероятного совпадения, она будет определенно иной, определенно единственной в своем роде. Продолжительность жизни одной хромосомы – одно поколение.

А какова продолжительность жизни более мелкой генетической, единицы, составляющей, например, 1/100 длины хромосомы 8а? Эту единицу вы также получили от отца, но весьма вероятно, что ее сборка происходила не в его организме. В соответствии с нашими прежними рассуждениями он с вероятностью 99 % получил ее в интактном состоянии от одного из двух своих родителей. Допустим, это была его мать, то есть ваша бабушка со стороны отца. Она с вероятностью 99 % получила эту хромосому в интактном виде от одного из своих родителей. В конечном счете, проследив родословную маленькой генетической единицы на достаточном числе поколений, мы дойдем до ее первоначального создателя. На какой-то стадии она, вероятно, была создана впервые в некоем семеннике или яичнике одного из ваших предков.

Позвольте мне еще раз напомнить о специальном смысле, который я вкладываю в слово “создавать”. Вполне возможно, что мелкие субъединицы, составляющие рассматриваемую нами генетическую единицу, существовали давно. Наша генетическая единица была создана в какой-то конкретный момент только в том смысле, что определяющего ее особого расположения субъединиц до того не существовало. Момент создания мог наступить совсем недавно, например у одного из ваших дедов или бабок. Но если речь идет об очень маленькой генетической единице, то она могла быть впервые собрана у одного из гораздо более далеких предков, возможно, у человекообразного предка, еще не достигшего статуса человека. Кроме того, имеющаяся у вас маленькая генетическая единица вполне может просуществовать в течение такого же долгого времени в будущем, оставаясь интактной при прохождении через длинный ряд ваших потомков.

Напомню также, что потомки одного индивидуума образуют не прямую линию, а ветвящееся дерево. У того (или той) из ваших предков, кем бы он ни был, который “создал” данный короткий участок вашей хромосомы 8а, было скорее всего, помимо вас, еще много других потомков. Одну из ваших генетических единиц может иметь также ваш двоюродный брат. Она может иметься у меня, у английского премьер-министра, а также у вашей собаки, поскольку, зайдя достаточно далеко вглубь веков, у всех у нас можно обнаружить общих предков. Кроме того, точно такая же мелкая единица случайно могла быть независимо собрана несколько раз: если единица достаточно мала, совпадение нельзя считать чересчур маловероятным. Однако даже у близкого родственника вряд ли удастся обнаружить целую хромосому, в точности идентичную одной из ваших. Чем мельче генетическая единица, тем больше вероятность того, что она имеется у какого-то другого индивидуума, – тем больше вероятность того, что она многократно представлена в виде копий.

Случайное объединение в результате кроссинговера предсуществующих субъединиц – обычный способ возникновения новой генетической единицы. Другой способ, имеющий, несмотря на свою редкость, огромное эволюционное значение, называется точковой мутацией. Это ошибка, соответствующая буквенной опечатке в книге. Она случается редко, однако очевидно, что чем длиннее генетическая единица, тем скорее можно ожидать, что в ней возникнет изменение в результате мутации в какой-то ее точке.

Другую редкую ошибку или мутацию, имеющую важные долгосрочные последствия, назвали инверсией. Она возникает в результате того, что участок хромосомы, выщепившись из нее, поворачивается на 180° и в таком повернутом положении вновь занимает свое место. Возвращаясь к нашей аналогии со скоросшивателем, можно сказать, что для этого придется перенумеровать листы. Иногда участки хромосом не просто поворачиваются, но, повернувшись, располагаются в совершенно другой части хромосомы или даже вообще включаются в другую хромосому. Это можно сравнить с переносом пачки листов из одного тома в другой. Значение такого рода ошибок объясняется тем, что хотя они обычно бывают гибельными, иногда при этом происходит тесное сцепление участков генетического материала, которые начинают “сотрудничать” друг с другом. Возможно, что в результате инверсии два цистрона, благоприятное воздействие которых проявляется лишь в случае их одновременного присутствия, поскольку каждый из них как-то дополняет или усиливает действие другого, оказываются рядом. Если затем естественный отбор будет благоприятствовать новой “генетической единице”, она распространится в будущей популяции. Возможно, на протяжении долгих лет генные комплексы усиленно перестраивались или “редактировались” именно таким путем.

Один из лучших примеров – явление мимикрии. Некоторые бабочки обладают неприятным вкусом. Они обычно имеют яркую и броскую “предупреждающую” окраску, и птицы научаются избегать их. Этим воспользовались другие виды бабочек, не обладающие противным вкусом, которые подражают несъедобным бабочкам. Они сходны с последними по окраске и форме (но не по вкусу) и нередко вводят в заблуждение не только птиц, но и натуралистов. Птица, которая однажды попробовала съесть невкусную бабочку, избегает хватать всех других бабочек, которые на нее похожи. В их число входят бабочки с подражательной окраской, так что естественный отбор благоприятствует генам, детерминирующим такую окраску.

Существует много различных видов “невкусных” бабочек, и не все они сходны между собой. Данная бабочка может подражать лишь одному виду, а не всем сразу. Вообще каждый отдельный вид специализируется на подражании одному определенному “невкусному” виду. Но у некоторых мимикрирующих видов обнаружено очень странное явление: одни особи данного вида подражают одному “невкусному” виду, а другие – другому. Любая особь, промежуточная между этими двумя формами или пытающаяся подражать обоим видам сразу, была бы очень скоро съедена, но такие промежуточные особи не рождаются. Подобно тому, как каждая данная особь определенно представляет собой либо самца, либо самку, так и каждая бабочка подражает либо одному “невкусному” виду, либо другому. Одна бабочка может подражать виду А, а ее брат – виду В.

Создается впечатление, что какой-то один ген определяет, будет ли данная особь подражать виду А или виду В. Но как может один ген определять все многообразные аспекты мимикрии: окраску, форму, характер узоров окраски, ритм полета? На это следует ответить, что один ген в смысле одного цистрона, вероятно, не может. Однако в результате бессознательного и автоматического “редактирования”, осуществляемого инверсиями и другими случайными перестройками генетического материала, большой кластер прежде обособленных генов объединяется в данной хромосоме в прочно сцепленную группу. Весь этот кластер ведет себя как единый ген – в сущности, в соответствии с нашим определением, теперь он и есть единый ген, – и у него имеется “аллель”, представляющий собой другой кластер. Один кластер содержит цистроны, обеспечивающие подражание виду A, другой – цистроны, определяющие подражание виду В. Каждый кластер так редко разрывается при кроссинговере, что в природе никогда не встречаются бабочки промежуточного типа, но они довольно часто появляются при массовом разведении в лаборатории.

Под словом “ген” я имею в виду генетическую единицу, которая достаточно мала, чтобы сохраняться на протяжении многих поколений и распространяться вокруг в большом числе копий. Это не жесткое определение типа “все или ничего”, но определение несколько расплывчатое, подобное таким определениям, как “большой” или “старый”. Чем больше вероятность того, что данный участок хромосомы будет разорван при кроссинговере или изменится в результате разного рода мутаций, тем меньше он заслуживает названия гена в том смысле, который я вкладываю в этот термин. По-видимому, под это определение подпадает цистрон, но это могут быть и крупные единицы. Десяток цистронов может располагаться в хромосоме в такой тесной близости, что для наших целей их можно считать одной долгоживущей генетической единицей. Хорошим примером служит кластер, определяющий мимикрию у бабочек. Когда цистроны покидают одно тело и входят в следующее, используя сперматозоид или яйцеклетку для путешествия в следующее поколение, они, вероятно, могут обнаружить на своем маленьком кораблике ближайших соседей по предыдущему путешествию – старых товарищей, вместе с которыми они совершили долгое путешествие, начавшееся в телах очень далеких предков. Соседние цистроны, лежащие в той же хромосоме, образуют тесно сцепленную группу попутчиков, которым лишь в редких случаях не удается “взойти на борт” того же “судна”, когда наступает пора мейоза.

Строго говоря, эту книгу следовало бы назвать не “Эгоистичный цистрон” и не “Эгоистичная хромосома”, а “Немножко эгоистичный большой кусочек хромосомы и даже еще более эгоистичный маленький кусочек хромосомы”. Такое название, мягко говоря, малопривлекательно, а поэтому, определив ген как небольшой кусочек хромосомы, потенциально сохраняющийся на протяжении многих поколений, я выбрал название “Эгоистичный ген”.

Мы теперь вернулись назад к пункту, от которого отошли в конце главы 1. Там мы убедились, что эгоистичности следует ожидать от любой сущности, заслуживающей названия основной единицы естественного отбора. Мы видели, что некоторые исследователи считают единицей естественного отбора вид, другие – популяцию или группу в пределах вида, третьи – индивидуум. Я предпочитаю рассматривать в качестве основной единицы естественного отбора, а поэтому и функциональной единицы, представляющей самостоятельный интерес, отдельный ген. В этой главе я определил ген таким образом, что при всем желании не могу оказаться неправым!

Естественный отбор в самой общей форме означает дифференциальное выживание организмов. Одни организмы сохраняются, а другие вымирают, но для того, чтобы эта селективная гибель оказывала какое-то воздействие на мир, необходимо еще одно условие: каждый организм должен существовать в большом числе копий, и по крайней мере некоторые организмы должны быть потенциально способны выжить – в форме копий – в течение значимого периода эволюционного времени. Этими свойствами наделены мелкие генетические единицы. Индивидуумы, группы и виды таких свойств лишены. Большая заслуга Грегора Менделя состоит в том, что он продемонстрировал возможность рассматривать наследственные единицы как неделимые и независимые частицы. Сегодня мы знаем, что это некоторое упрощение. Даже цистрон иногда поддается делению, а любые два гена, находящиеся в одной хромосоме, не вполне независимы. Что касается меня, то я определил ген как единицу, которая в значительной степени приближается к идеалу неделимой корпускулярности. Ген нельзя считать неделимым, но делится он редко. Он несомненно присутствует либо несомненно отсутствует в теле каждого данного индивидуума. Ген передается от деда или бабки к внуку или внучке, оставаясь интактным, и проходит через промежуточное поколение, не смешиваясь с другими генами. Если бы гены постоянно сливались друг с другом, естественный отбор в нашем теперешнем понимании был бы невозможен. Между прочим, это было доказано еще при жизни Дарвина и причинило ему немало беспокойства, поскольку в те дни господствовала теория слитной наследственности. Открытие Менделя уже было опубликовано, и оно могло бы успокоить Дарвина, но, увы, он так и не узнал о нем. Никто, по-видимому, не прочитал тогда эту работу. Она привлекла внимание лишь спустя годы после смерти и Дарвина, и Менделя. Последний, возможно, не представлял себе всего значения своих открытий, иначе он мог бы написать Дарвину.

Другой аспект корпускулярности гена состоит в том, что он никогда не стареет. Он с равной вероятностью может умереть в возрасте как миллиона, так и всего ста лет. Он перепрыгивает из одного тела в другое, манипулируя ими на свой лад и в собственных целях, покидая эти смертные тела одно за другим, прежде чем они состарятся и умрут.

Гены бессмертны. Или, скорее, их определяют как генетические сущности, почти заслуживающие такого эпитета. Мы, индивидуальные машины выживания в этом мире, можем рассчитывать прожить еще несколько десятков лет. Но ожидаемая продолжительность жизни генов должна измеряться не в десятках, а в тысячах и миллионах лет.

У видов, размножающихся половым путем, отдельная особь – слишком крупная и слишком преходящая генетическая единица, чтобы ее можно было назвать значимой единицей естественного отбора[11]. Группа индивидуумов – еще более крупная единица. С генетической точки зрения индивидуумы и группы подобны тучам на небе или пыльным бурям в пустыне. Это временные агрегации или федерации. Они не остаются стабильными в эволюционном масштабе времени. Популяции могут сохраняться довольно долго, но они постоянно смешиваются с другими популяциями, утрачивая при этом свою идентичность. Кроме того, они подвержены эволюционному изменению изнутри. Популяция недостаточно дискретна, чтобы служить единицей естественного отбора, и недостаточно стабильна и однородна, чтобы оказаться “отобранной” в ущерб другой популяции.

Отдельный организм кажется достаточно дискретным, пока он живет, но, Боже, как недолго это длится! Каждый индивидуум уникален. Эволюция невозможна, если все, чем вы располагаете – выбор между организмами, каждый из которых имеется лишь в одном экземпляре! Половое размножение – это не репликация. Точно так же, как данная популяция “загрязнена” другими популяциями, так и потомство данного индивидуума “загрязнено” потомством его полового партнера. В ваших детях от вас лишь половина, в ваших внуках – лишь четверть. По прошествии нескольких поколений вы можете надеяться только на то, что каждый из ваших многочисленных потомков будет нести в себе маленькую частичку, полученную от вас, всего несколько генов, даже в том случае, если некоторые среди этих потомков будут носить вашу фамилию.

Индивидуумы не вечны – они преходящи. Хромосомы также уходят в небытие, подобно пачке карт, полученных каждым из игроков и отыгранных вскоре после сдачи. Но с самими картами при тасовке ничего не происходит. Карты – это гены. Гены не разрушаются при кроссинговере, они просто меняют партнеров и продолжают двигаться дальше. Конечно, они движутся дальше. Это их работа. Они – репликаторы, а мы – машины, необходимые им для того, чтобы выжить. После того как мы выполнили свою задачу, нас выбрасывают. Но гены – выходцы из геологического времени, они здесь навеки.

Гены, подобно алмазам, вечны, но в несколько ином плане, чем алмазы. Отдельный кристалл алмаза постоянно сохраняет неизменную атомную структуру. Молекула ДНК не обладает таким постоянством. Жизнь каждой физической молекулы ДНК довольно коротка – возможно, несколько месяцев, и безусловно не больше продолжительности жизни человека. Но молекула ДНК может теоретически продолжать существование в виде копии самой себя в течение 100 миллионов лет. Кроме того, подобно древним репликаторам в первичном бульоне, копии какого-то одного гена могут распространиться по всему миру. Разница лишь в том, что все современные варианты аккуратно упакованы в тела машин выживания.

Всем этим я хочу подчеркнуть потенциальное квазибессмертие гена в форме копий как его определяющее свойство. Для некоторых целей вполне приемлемо определить ген как отдельный цистрон, однако для эволюционной теории это определение следует расширить. Степень расширения зависит от целей данного определения. Мы хотим найти практическую единицу естественного отбора. Для начала мы должны перечислить те свойства, которыми должна обладать единица естественного отбора, чтобы добиться успеха. Как было установлено в главе 2, это долговечность, плодовитость и точность копирования. Затем мы просто определяем “ген” как самую большую единицу, которая, по крайней мере потенциально, обладает этими свойствами. Ген – это долгоживущий репликатор, существующий в форме многих идентичных копий. Его долговечность не безгранична. Даже алмаз нельзя считать абсолютно вечным, и даже цистрон может оказаться разрезанным пополам при кроссинговере. Ген можно определить как участок хромосомы, достаточно короткий, чтобы он мог сохраняться потенциально в течение достаточно долгого времени и функционировать в качестве значимой единицы естественного отбора.

Что именно означает “достаточно долгое время”? Однозначно и быстро ответить на этот вопрос нельзя. Все зависит от того, насколько сильное “давление” оказывает естественный отбор. Иными словами, насколько больше вероятность того, что погибнет “плохая” генетическая единица, а не ее “хороший” аллель. Это чисто количественный фактор, который в разных случаях будет неодинаков. Самая крупная практическая единица естественного отбора – ген – обычно занимает на шкале промежуточное положение между цистроном и хромосомой.

Ген является хорошим кандидатом на роль основной единицы естественного отбора благодаря своему потенциальному бессмертию. Теперь настало время остановиться на слове “потенциальное”. Ген может прожить миллион лет, но многие новые гены не доживают до конца даже в своем первом поколении. Те немногие гены, которым это удается, выживают отчасти просто потому, что им повезло, но главным образом благодаря имеющимся у них необходимым качествам, а это означает, что они способны создавать машины выживания. Они воздействуют на эмбриональное развитие каждого из последовательного ряда тел, в которых они оказываются, в результате чего шансы этого тела на выживание и размножение становятся чуть выше, чем они могли бы быть при воздействии на него конкурентного гена или аллеля. Например, “хороший” ген может обеспечить свое выживание, последовательно наделяя тела, в которых он оказывается, длинными ногами, дающими им возможность убегать от хищников. Это частный, а не универсальный пример. Длинные ноги ведь не всегда дают преимущество. Кроту они осложняли бы жизнь. Не лучше ли нам, не увязая в деталях, подумать о каких-то универсальных качествах, которые мы ожидаем встретить у всех хороших (то есть долгоживущих) генов? А также о том, каковы те свойства, по которым можно сразу узнать “плохой” недолговечный ген? Таких универсальных свойств может быть несколько, но одно из них особенно тесно связано с темой книги: на генном уровне альтруизм – плохая черта, а эгоизм – хорошая. Это неумолимо вытекает из наших определений альтруизма и эгоизма. Гены непосредственно конкурируют за выживание со своими аллелями, содержащимися в генофонде, поскольку эти аллели стремятся занять их место в хромосомах последующих поколений. Любой ген, поведение которого направлено на то, чтобы повысить собственные шансы на сохранение в генофонде за счет своих аллелей, будет, по определению, стремиться выжить (в сущности, это тавтология). Ген представляет собой основную единицу эгоизма.

Итак, мы сформулировали главную идею этой главы. Но я завуалировал при этом некоторые сложности и негласные допущения. О первой сложности мы уже вкратце говорили. Как бы независимо и свободно ни совершали гены свое путешествие из поколения в поколение, их никак нельзя считать свободными и независимыми в роли факторов, регулирующих эмбриональное развитие. Они сотрудничают и взаимодействуют как между собой, так и с внешней средой неимоверно сложными способами. Такие выражения, как “ген длинных ног” или “ген альтруистичного поведения” – удобные обороты речи, однако важно понимать, что они означают. Нет такого гена, который сам по себе создает длинную или короткую ногу. Построение ноги требует совместного действия множества генов. Необходимо также участие внешней среды: в конечном счете ноги “сделаны” из пищи! Вполне возможно, однако, что существует некий ген, который, при прочих равных условиях, детерминирует развитие более длинных ног, чем его аллель.

В качестве аналогии приведем влияние удобрения, например нитрата, на рост пшеницы. Общеизвестно, что пшеница лучше растет при внесении в почву нитрата, чем без удобрения. Никто, однако, не станет утверждать, что растение пшеницы можно получить из одного только нитрата. Совершенно очевидно, что для этого необходимы также семена, почва, солнечный свет, вода и различные минеральные вещества. Но если все эти другие факторы остаются на постоянном уровне или даже варьируют в известных пределах, добавление нитрата улучшит рост пшеницы. То же самое относится к воздействию единичных генов на развитие зародыша. Эмбриональное развитие контролируется такой сложной сетью переплетающихся взаимозависимостей, что нам лучше их не касаться. Ни один генетический фактор или фактор среды нельзя считать единственной “причиной” развития той или иной части тела младенца. Все части его тела образуются под влиянием практически бесконечного числа факторов. Но любое различие между одним младенцем и другим, например различие в длине ног, можно без труда объяснить одним или несколькими простыми различиями либо в среде, либо в генах. В конкретной борьбе за выживание главная роль принадлежит именно различиям, причем эволюционное значение имеют различия, контролируемые генетически.

 

В той мере, в какой это касается гена, его аллели – это его злейшие соперники, тогда как другие гены – это лишь часть его среды, подобно температуре, пище, хищникам или компаньонам. Эффект данного гена зависит от его среды, а в нее входят другие гены. Иногда данный ген характеризуется одним эффектом в присутствии какого-то определенного гена и совсем другим в присутствии иного набора генов. Весь набор генов данного организма образует своего рода генетический климат, или фон, изменяющий эффекты каждого отдельного гена и влияющий на них.

Здесь мы, по-видимому, столкнулись с парадоксом. Если создание младенца – столь сложный процесс, требующий совместного действия множества участников, и если каждому гену необходимы несколько тысяч других генов, чтобы выполнить данную задачу, то как примирить это с представленной мной картиной неделимых генов, перепрыгивающих, подобно сернам, из тела в тело на протяжении веков: свободных, не встречающих препятствий и своекорыстных факторов жизни? Так все это было чепухой? Вовсе нет. Может быть, кое-где я несколько увлекся, но я не говорил ерунды и никакого парадокса на самом деле нет. Это можно объяснить с помощью другой аналогии.

Один гребец в одиночку не может выиграть соревнования по гребле между Оксфордским и Кембриджским университетами. Ему нужны восемь товарищей. Каждый из них – “специалист” в своей области и всегда занимает в лодке определенное место, выполняя функции рулевого, загребных или носового. Гребля – коллективное мероприятие, причем одни спортсмены часто бывают сильнее других. Допустим, что тренер хочет набрать идеальную команду из числа кандидатов, среди которых есть рулевые, загребные и носовые. Предположим, что отбор происходит следующим образом. Каждый день тренер создает три новые пробные команды, произвольно перебрасывая кандидатов на каждое место в лодке из одной команды в другую и устраивая затем соревнования между командами. Спустя несколько недель выясняется, что в выигрывающей команде часто участвуют одни и те же спортсмены. Их берут на заметку как хороших гребцов. Другие кандидаты чаще всего оказываются в проигрывающих командах, и от них в конце концов отказываются. Но даже выдающийся гребец может иногда оказаться в проигравшей команде либо вследствие низкого уровня других ее членов, либо просто по невезению, например из-за встречного ветра. Сильные спортсмены лишь в среднем попадают в состав выигрывающей команды.

Гребцы – это гены. Соперники за каждое место в лодке – аллели, способные занимать одно и то же место в хромосоме. Быстрая гребля соответствует способности построить тело, достигающее успеха, то есть выживающее. Ветер – это внешняя среда. Масса альтернативных кандидатов – генофонд. В той мере, в какой это касается выживания каждого отдельного тела, все его гены находятся в одной и той же лодке. Многие “хорошие” гены попадают в “плохую” компанию, оказавшись в теле, где имеется летальный ген, убивающий это тело еще в детском возрасте. В таком случае хороший ген гибнет вместе с остальными. Но это только одно тело, а ведь копии нашего хорошего гена живут и в других телах, в которых нет летального гена. Многие гены идут на дно, потому что они оказались в данном теле вместе с плохими генами, многие гибнут из-за неприятных событий другого рода, например потому, что в “их” тело ударила молния. Однако по определению удача и невезенье распределяются случайным образом, и ген, который постоянно проигрывает, не просто неудачник – это плохой ген.

Одно из качеств хорошего гребца – способность к слаженному взаимодействию с другими членами команды. Это может быть не менее важно, чем сильные мышцы. Как это было показано на примере с бабочками, естественный отбор может бессознательно “редактировать” данный генный комплекс с помощью инверсий и других крупных перемещений кусочков хромосом, в результате чего гены, которые хорошо кооперируются, образуют тесно сцепленные группы. Однако существует еще одна возможность для того, чтобы гены, никак не связанные между собой физически, могли отбираться по своей взаимной совместимости. Ген, хорошо сотрудничающий с большинством генов всего остального генофонда, с которыми он имеет шансы встретиться в последовательных телах, будет обладать неким преимуществом.

Например, чтобы хищник был эффективным, он должен обладать острыми резцами, кишечником определенного строения, способным переваривать мясо, и многими другими признаками. А эффективному растительноядному нужны плоские перетирающие зубы и гораздо более длинный кишечник с совершенно иным биохимическим механизмом переваривания пищи. В генофонде какого-нибудь растительноядного любой новый ген, который преподнес бы своим обладателям острые плотоядные зубы, не имел бы успеха, и не потому, что плотоядность вообще нечто дурное, но потому, что организм не может эффективно усваивать мясо, если у него нет соответствующей пищеварительной системы. Гены острых плотоядных зубов не несут в себе ничего безусловно отрицательного. Они плохи только в таком генофонде, в котором доминируют гены признаков, связанных с растительноядным типом питания.

Это очень сложная и тонкая идея. Она сложна, потому что “среда” каждого отдельного гена в значительной мере состоит из других генов, каждый из которых сам подвергается отбору, направленному на способность кооперироваться со своей средой из других генов. Аналогия, позволяющая пояснить эту тонкость, существует, однако она выходит за рамки нашего повседневного опыта. Это аналогия с математической теорией игр, которая понадобится нам в связи с агрессивным соперничеством между отдельными животными. Поэтому я откладываю обсуждение этого вопроса до тех пор, пока мы не дойдем до конца главы 5, и возвращаюсь к центральной идее данной главы. Она заключается в том, что основной единицей естественного отбора лучше считать не вид, не популяцию, даже не индивидуум, а какую-то небольшую единицу генетического материала, которую удобно назвать геном. Краеугольным камнем этих рассуждений, как мы уже говорили, служит допущение, что гены потенциально бессмертны, тогда как тела и все другие единицы более высокого ранга преходящи. Рассуждения эти основаны на двух фактах: факте полового размножения и кроссинговера и факте смертности отдельного индивидуума. Сами факты несомненно верны. Однако остается вопрос, почему они верны. Почему человек, как и большинство других машин выживания, практикует половое размножение? Почему его хромосомы вступают в кроссинговер? И почему он не живет вечно?

Вопрос о том, почему человек умирает от старости, очень сложен, и его подробный разбор выходит за рамки этой книги. Помимо особых причин, было выдвинуто несколько более общих. Например, по одной теории, одряхление представляет собой накопление гибельных ошибок копирования и других повреждений генов, возникающих в течение жизни индивидуума. Другая теория (теория старения), принадлежащая сэру Питеру Б. Медавару, служит хорошим примером эволюционного мышления в терминах отбора генов[12]. Медавар сначала отказывается от таких классических утверждений, как “старые особи умирают, совершая акт альтруизма по отношению к виду в целом, потому что если бы они продолжали существовать, будучи слишком дряхлыми для того, чтобы размножаться, они просто создавали бы бессмысленный беспорядок и хаос”. Как указывает Медавар, такие рассуждения приводят к порочному кругу, поскольку исходят из допущения того, что они собираются доказать, а именно – что старые животные слишком дряхлы, чтобы участвовать в размножении. Кроме того, они относятся к категории наивных объяснений с точки зрения группового отбора или межвидового отбора, хотя эту их часть можно перефразировать, представив в более респектабельной форме. Собственная же теория Медавара вполне логична. Мы можем подойти к ней следующим образом.

Мы уже ставили вопрос о том, каковы самые общие атрибуты “хорошего” гена, и пришли к выводу, что один из них – это “эгоизм”. Но другое общее качество, которым должны обладать гены, добивающиеся успеха, это тенденция отсрочить смерть своих машин выживания по крайней мере до тех пор, пока последние не размножатся. Возможно, кто-то из ваших двоюродных братьев, или сестер и братьев, или сестер ваших бабушек и дедушек умер в детстве, но ни с одним из ваших прямых предков этого не случилось. Предки просто не умирают юными!

Ген, вызывающий смерть своих обладателей, называют летальным. Существуют также полулетальные (сублетальные) гены, ослабляющие индивидуум и повышающие вероятность его смерти от других причин. Каждый ген проявляет свой максимальный эффект на какой-то определенной стадии жизни организма, и летальные и полулетальные гены не составляют в этом смысле исключения. Большинство генов оказывает свое влияние на плод, некоторые другие – в детстве, третьи – в молодом возрасте, четвертые – в среднем и, наконец, некоторые в старости. (Обратите внимание, что гусеница и бабочка, в которую она превращается, содержат абсолютно одинаковые наборы генов.) Совершенно очевидно, что летальные гены должны удаляться из генофонда. Но столь же очевидно, что летали, действие которых проявляется в позднем возрасте, в генофонде более стабильны, чем летали, действующие на более ранних стадиях. Ген, оказывающий летальный эффект, находясь в старом теле, может тем не менее сохраняться в генофонде, если этот эффект проявляется после того, как данное тело имело возможность принять хоть какое-то участие в размножении. Например, ген, обусловливающий развитие в старом теле злокачественных новообразований, может быть передан многочисленным потомкам, потому что его носители успевают родить детей до развития болезни. В отличие от этого ген, вызывающий злокачественный рост у молодых индивидуумов, не может быть передан большому числу потомков, а ген, проявляющий аналогичное действие у детей, не будет передан никому вообще. Таким образом, согласно этой теории, старческое угасание – просто побочный продукт накопления в генофонде тех действующих на поздних стадиях летальных и полулетальных генов, которым удалось пройти сквозь сети естественного отбора лишь потому, что их эффект проявляется в позднем возрасте.

Сам Медавар подчеркивает, что отбор благоприятствует генам, которые сдвигают на более поздние сроки действие других, летальных, генов, а также генам, способным ускорять эффект хороших генов. Возможно, что эволюция в значительной степени заключается в генетически контролируемых изменениях времени наступления генной активности.

Важно отметить, что эта теория не требует никаких предварительных допущений о возможности размножения только в определенном возрасте. Приняв в качестве начального допущения, что все индивидуумы с равной вероятностью могут иметь ребенка в любом возрасте, теория Медавара позволяет быстро предсказать накопление в генофонде вредных генов, действие которых проявляется в позднем возрасте, а тенденция к снижению размножения в старости вытекает из этого в качестве вторичного следствия.

Несколько отклоняясь в сторону, укажем, что одно из достоинств этой теории – некоторые связанные с ней довольно интересные гипотезы. Из нее следует, например, что если бы мы захотели увеличить продолжительность жизни человека, то могли бы воспользоваться двумя основными способами. Во-первых, можно было бы запретить людям иметь детей до определенного возраста, скажем до сорока лет. Через несколько десятилетий этот минимальный возраст повысился бы до пятидесяти лет и так далее. Можно допустить, что таким способом продолжительность жизни человека удалось бы довести до нескольких сотен лет. Однако я не могу представить себе, чтобы кто-нибудь серьезно захотел завести такой порядок.

Во-вторых, мы могли бы попытаться “обмануть” гены, заставив их считать, что тело, в котором они находятся, моложе, чем это есть на самом деле. Практически это означало бы идентифицировать изменения, происходящие во внутренней химической среде организма в процессе старения. Любое из них могло бы оказаться той “кнопкой”, которая “включает” летальные гены, действующие на поздних этапах жизни. Имитируя какие-либо несущественные химические свойства тела молодого индивидуума, быть может, удалось бы предотвратить включение таких “поздних” летальных генов. Отметим, что сами по себе химические сигналы, свойственные позднему возрасту, не должны быть гибельными в обычном смысле слова. Предположим, например, что содержание некоего вещества S в теле старых индивидуумов выше, чем в теле молодых. Вещество S само по себе может быть совершенно безвредным, будучи каким-то компонентом пищи, постепенно накапливающимся в теле. Но автоматически любой ген, который оказывает вредное действие в присутствии вещества S, хотя во всем остальном обладает благоприятным эффектом, будет сохраняться отбором в генофонде и фактически окажется тем геном, который вызывает смерть от старости. Для того чтобы избежать этого, достаточно было бы удалить из тела вещество S.

Революционность этой идеи состоит в том, что вещество S как таковое – всего лишь “метка”, указывающая на преклонный возраст. Любой врач, обративший внимание на то, что высокое содержание вещества S часто ведет к смерти, возможно, решил бы, что это вещество токсично, и ломал бы голову, пытаясь найти прямую причинную связь между ним и нарушением функций организма. Однако в рассматриваемом нами гипотетическом случае он просто терял бы понапрасну время!

Возможно, существует также некое вещество – “метка” молодости в том смысле, что содержание его выше в теле молодых индивидуумов, чем старых. Опять-таки может происходить отбор генов, обладающих благоприятным эффектом в присутствии вещества Y, но гибельных в его отсутствие. Поскольку мы не имеем возможности установить природу веществ S и Y (таких веществ может быть много), нам остается просто сделать общее предсказание: чем лучше удастся смоделировать или имитировать в старом теле свойства тела молодого, какими бы несущественными эти свойства ни казались, тем дольше будет жить это старое тело.

Я должен подчеркнуть, что это всего лишь спекуляции, основанные на теории Медавара. Хотя в некотором смысле в теории Медавара по логике вещей должна быть доля правды, это не обязательно означает, что она позволяет правильно объяснить любой реальный пример старческого разрушения организма. Для наших нынешних целей важно, что взгляд на эволюцию с точки зрения отбора генов позволяет без труда объяснить тенденцию индивидуумов умирать, когда они становятся старыми. Допущение о смертности индивидуумов, занимающее центральное место в наших рассуждениях в этой главе, оправдано в рамках теории Медавара.

Другое допущение, о котором я лишь упомянул, – существование полового размножения и кроссинговера – оправдать труднее. Кроссинговер имеет место не всегда. У самцов дрозофилы он не происходит. У дрозофилы есть ген, который подавляет кроссинговер и у самок. Если бы нам надо было разводить популяцию мух, в которой этот ген содержали бы все особи, хромосома в “хромосомном фонде” стала бы основной неделимой единицей естественного отбора. В сущности, если довести наше определение до его логического конца, целую хромосому следовало бы рассматривать как один “ген”.

Существуют альтернативы и для полового размножения. Самки тлей без участия отцов рождают живых личинок, каждая из которых содержит все гены матери. (Между прочим, зародыш, находящийся в “матке” своей матери, может содержать в собственной матке еще меньший зародыш. Таким образом, самка тли может родить одновременно дочь и внучку, которые обе эквивалентны идентичным близнецам этой самки.) Многие растения размножаются вегетативно, выбрасывая боковые побеги. В этом случае мы предпочитаем говорить о росте, а не о размножении. Но тогда, если поразмыслить, различие между ростом и неполовым размножением вообще не очень велико, поскольку как то, так и другое происходит путем простого митотического деления клетки. Иногда растения, возникающие в результате вегетативного размножения, отделяются от родительского растения. В других случаях, например у ильма, корневые отпрыски остаются связанными с родительскими деревьями. В сущности весь ильмовый лес можно рассматривать как один индивидуум.

Итак, вопрос: почему все мы прилагаем столько усилий, чтобы смешать наши гены с генами кого-то другого, прежде чем зачать ребенка, если тли и ильмы обходятся без этого? Такой образ действий кажется довольно странным. Почему вообще возник пол, это странное искажение прямой репликации? Что хорошего в половом размножении?[13]

Это вопрос, на который эволюционисту ответить крайне трудно. Серьезные попытки разобраться в этой проблеме по большей части сопряжены со сложнейшими математическими рассуждениями. Я собираюсь честно избежать их, ограничившись лишь одним заявлением: трудности, с которыми сталкиваются теоретики, пытаясь объяснить эволюцию пола, по крайней мере отчасти связаны с тем, что по их представлениям индивидуум старается максимизировать число своих выживающих генов. В свете таких представлений половое размножение воспринимается как нечто парадоксальное, поскольку это “неэффективный” для индивидуума способ размножать свои гены: каждый ребенок получает при этом только 50 % генов данной самки, а остальные 50 % поставляет ее половой парт-нер. Если бы только самка подобно тле отпочковывала детенышей, которые были бы ее точными копиями, она передавала бы следующему поколению в теле каждого детеныша 100 % своих генов. Этот кажущийся парадокс заставил некоторых теоретиков примкнуть к сторонникам теории группового отбора, поскольку на уровне группы относительно легко представить себе преимущества полового процесса. Как высказался по этому поводу без лишних слов Уолтер Бодмер, половое размножение “облегчает накопление в одном индивидууме благоприятных мутаций, которые возникали по отдельности у разных индивидуумов”.

Однако этот парадокс покажется менее парадоксальным, если в соответствии с приведенными в моей книге доводами рассматривать индивидуум как машину выживания, создаваемую короткоживущей конфедерацией долгоживущих генов. В этом случае “эффективность” с точки зрения индивидуума в целом окажется несущественной. Половое размножение и его альтернатива – размножение бесполое – будут рассматриваться как признак, контролируемый одним геном, подобно такому признаку, как цвет глаз (голубые или карие). Ген, “определяющий” половое размножение, манипулирует всеми остальными генами в своих эгоистичных целях. То же самое делает ген кроссинговера. Существуют даже особые гены, называемые мутаторами, которые управляют частотой ошибок, допускаемых при копировании других генов. По определению, ошибка при копировании неблагоприятна для гена, который был неверно скопирован. Но если она благоприятна для индуцировавшего ее эгоистичного гена-мутатора, то этот мутатор может распространиться в генофонде. Точно так же, если кроссинговер создает преимущество для гена кроссинговера, то этого достаточно для объяснения существования кроссинговера. А если половое размножение как противоположное бесполому благоприятно для гена, определяющего половое размножение, то этого достаточно для объяснения существования последнего. Благоприятно ли оно для всех остальных генов данного индивидуума, не очень важно. С точки зрения эгоистичного гена половое размножение вовсе не такое уж странное явление.

Эти рассуждения угрожающе приближаются к порочному кругу, поскольку существование полового размножения – непременное предварительное условие для цепи рассуждений, которые ведут к тому, чтобы считать ген единицей отбора. Я полагаю, что этого порочного круга можно избежать, но настоящая книга – не место для дальнейшего обсуждения данного вопроса. Половое размножение существует. Уж это точно. Именно благодаря существованию полового размножения и кроссинговера мелкая генетическая единица, или ген, может рассматриваться в качестве наиболее вероятного кандидата на роль фундаментального независимого фактора эволюции.

Половое размножение – не единственный кажущийся парадокс, который становится менее запутанным, как только мы подходим к нему с позиций эгоистичного гена. Кажется, например, что организмы содержат в себе гораздо больше ДНК, чем это им необходимо: значительная часть ДНК никогда не транслируется в белок. С точки зрения индивидуального организма это представляется парадоксальным. Если “предназначение” ДНК состоит в том, чтобы надзирать за построением организмов, то странно, что значительная ее часть не принимает в этом участия. Биологи ломают себе голову, пытаясь понять, какую полезную функцию несет эта, казалось бы, избыточная ДНК. Однако с точки зрения самих эгоистичных генов в этом нет никакого парадокса. Истинное “предназначение” ДНК состоит в том, чтобы выжить – не больше и не меньше. Проще всего объяснить наличие избыточной ДНК, предположив, что это некий паразит или в лучшем случае неопасный, но бесполезный пассажир, попросивший подвезти его в машине выживания, созданной остальной ДНК[14].

Некоторые люди возражают против такого “геноцентрического”, по их представлениям, взгляда на эволюцию. В конечном счете, заявляют они, на самом деле живут или умирают целостные индивидуумы со всеми своими генами. Надеюсь, в этой главе я достаточно подробно разъяснил, что здесь на самом деле нет никаких разногласий. Точно так же, как гонку выигрывают или проигрывают целые лодки, выживают или умирают действительно индивидуумы, и непосредственное проявление естественного отбора почти всегда наблюдается на уровне индивидуумов. Однако долговременные последствия неслучайных смерти и успеха размножения индивидуумов выражаются в форме изменяющихся частот генов в генофонде. С некоторыми оговорками, генофонд играет для современных репликаторов ту самую роль, которую первичный бульон играл для первых репликаторов. Половое размножение и кроссинговер как бы обеспечивают сохранение современного эквивалента этого бульона в жидком состоянии. Благодаря половому процессу и кроссинговеру генофонд все время хорошо перемешивается, а гены частично перетасовываются. Эволюция – процесс, с помощью которого число одних генов в генофонде возрастает, а число других уменьшается. Было бы хорошо, если бы мы при попытке объяснить эволюцию какого-нибудь признака, например альтруистичного поведения, всякий раз просто спрашивали самих себя: “А какое действие окажет этот признак на частоты генов в генофонде?” Иногда язык генов становится несколько нудным, и мы будем прибегать к метафорам. Но мы всегда будем придирчиво оценивать их, чтобы в случае необходимости можно было вновь вернуться к генному языку.

В той мере, в какой это касается отдельного гена, генофонд – это тот бульон, в котором протекает жизнь гена. Единственное изменение состоит в том, что нынче он обеспечивает свое существование, кооперируясь со сменяющими одна другую группами компаньонов, которых он черпает из генофонда, создавая одну за другой смертные машины выживания. Этим машинам выживания и тому, в каком смысле можно говорить, что гены контролируют их поведение, посвящена глава 4.

 

 

Глава 4. Генная машина

Вначале машины выживания служили всего лишь пассивными вместилищами для генов, предоставляя им только стены для защиты от химических средств нападения их соперников и от случайных бомбардировок окружающими молекулами. В этот ранний период они “кормились” на органических молекулах, в изобилии содержавшихся в первичном бульоне. Беззаботной жизни пришел конец, когда запасы органической пищи, медленно создававшейся в первичном бульоне в течение многих веков под действием солнечного света, были исчерпаны. Одна из главных ветвей машин выживания, которые мы теперь называем растениями, начала сама непосредственно использовать солнечный свет для построения из простых молекул более сложных, вновь введя в действие процессы синтеза, протекавшие в первичном бульоне, однако теперь эти процессы происходили гораздо быстрее. Другая ветвь, называемая теперь животными, “открыла” для себя возможность эксплуатировать растения, поедая либо непосредственно плоды их биохимической деятельности, либо других животных. В процессе эволюции обе главные ветви машин выживания создавали все более и более замысловатые способы повышения своей эффективности в соответствии со своими различными образами жизни, непрерывно расширяя круг доступных ниш и местообитаний. Главные ветви делились на ветки и веточки, каждая из которых достигала совершенства в приспособлении к тому или иному специализированному образу жизни: в море, на земле, в воздухе, под землей, на деревьях, в телах других организмов. В результате такого ветвления возникало огромное разнообразие животных и растений, так поражающее нас сегодня.

Как у животных, так и у растений в результате эволюции возникли многоклеточные тела, причем каждая клетка получила полные копии всех генов, положенных данному виду. Мы не знаем, когда, почему и сколько раз это происходило. Некоторые авторы прибегают к метафоре, описывая тело как колонию клеток. Я предпочитаю представлять тело как колонию генов, а клетку – как удобную рабочую единицу для химической деятельности генов.

Но даже будучи колониями генов, тела в своем поведении несомненно обрели некую индивидуальность. Животное движется как согласованное целое. Субъективно я воспринимаю себя как нечто единое, а не как колонию. Это естественно. Отбор благоприятствовал генам, способным сотрудничать с другими генами. В отчаянной конкуренции за скудные ресурсы, в непрерывной борьбе за поедание других машин выживания и в стремлении избежать того, чтобы быть съеденным самому, центральная координация активности этой “коммуны” несомненно давала преимущество по сравнению с анархией. В наши дни сложнейшая взаимная коэволюция генов достигла такого уровня, что этот “коммунальный” характер отдельной машины выживания буквально невозможно разглядеть. Многие биологи в самом деле не признают его и не согласятся со мной.

К счастью, несогласие это носит, в сущности, академический характер и не помешает книге в остальном, как сказали бы журналисты, “заслуживать доверия”. Подобно тому, как не имеет смысла говорить о квантах и элементарных частицах, если речь идет о работе автомобиля, ни к чему все время упоминать гены, обсуждая поведение машин выживания. На практике бывает удобно рассматривать отдельное тело как фактор, который “старается” увеличить число всех своих генов в последующих поколениях. Я буду пользоваться этим удобным языком. Выражения “альтруистичное поведение” и “эгоистичное поведение” всегда означают поведение одного животного тела по отношению к другому, если только нет специальных оговорок.

Эта глава посвящена поведению – умению быстро двигаться, которое широко используется животной ветвью машин выживания. Животные стали активными предприимчивыми носителями для генов – генными машинами. Характерная черта поведения в том смысле, какой вкладывают в этот термин биологи, это быстрота. Растения двигаются, но очень медленно. В кинофильме, полученном методом цейтраферной съемки, лазающие растения выглядят, как активные животные. Но на самом деле движение растений представляет собой главным образом необратимый рост. В отличие от этого у животных в процессе эволюции возникли приспособления, обеспечивающие в сотни тысяч раз более быстрое движение. Кроме того, движения, совершаемые животными, обратимы и их можно повторять бесчисленное множество раз.

Приспособление, возникшее у животных в процессе эволюции для ускорения движения, – это мышца. Мышцы – это двигатели, которые, подобно паровому двигателю и двигателю внутреннего сгорания, расходуют энергию, запасенную в химическом топливе, для совершения механической работы. Различие между ними состоит в том, что непосредственная механическая сила данной мышцы имеет форму напряжения, а не давления газа, как в паровом двигателе и двигателе внутреннего сгорания. Но мышцы подобны двигателям в том смысле, что их усилие часто прилагается к канатам и рычагам с шарнирами. В наших телах рычаги – это кости, канаты – сухожилия, а шарниры – суставы. Нам известно очень многое о тех процессах на молекулярном уровне, которые происходят при работе мышцы, но меня больше интересует вопрос о ритме мышечных сокращений.

Приходилось ли вам наблюдать за работой какого-либо сложного искусственного механизма – вязальной или швейной машины, ткацкого станка, автоматической разливочной линии или пресса-подборщика сена? Поражает хитроумная слаженность всех операций. Клапаны открываются и закрываются в нужном порядке, стальные пальцы ловко завязывают узел на веревке, стягивающий кипу сена, а затем именно в нужный момент выскакивает нож и обрезает веревку. Во многих машинах, созданных человеком, согласование операций во времени осуществляется при помощи блестящего изобретения – кулачкового механизма. Этот механизм преобразует простое вращательное движение в сложную периодическую последовательность операций при помощи эксцентрика или колеса специальной формы. На сходном принципе основана и работа музыкальной шкатулки. В других инструментах, таких, как орган и пианола, используются бумажные ленты или карты с дырочками, расположенными определенным образом. В последнее время эти простые механические таймеры стали заменять электронными. Цифровые вычислительные машины служат примерами больших и разнообразных электронных устройств, которые можно использовать для генерирования сложных движений, происходящих в строго определенном ритме. Основным элементом современной электронной машины, такой, как компьютер, служит полупроводник, одна из разновидностей которого – транзистор – хорошо нам знакома.

Машины выживания далеко обошли кулачки и перфокарты. Аппарат, который они используют для согласования во времени своих движений, имеет больше общего с компьютером, хотя его действие основано на совершенно иных принципах. Главная единица биологического компьютера – нервная клетка, или нейрон, – по своему внутреннему устройству совсем не похожа на транзистор. Конечно, код, с помощью которого нейроны обмениваются информацией, напоминает код, основанный на последовательности импульсов, который используется в цифровых вычислительных машинах, однако отдельный нейрон гораздо более хитроумная единица для переработки информации, чем транзистор. Вместо всего-навсего трех связей с другими компонентами у одного нейрона их могут быть десятки тысяч. Нейрон действует медленнее, чем транзистор, но он достиг гораздо большего в направлении миниатюризации, которой на протяжении двух последних десятилетий уделялось главное внимание в электронной промышленности. В этом нетрудно убедиться уже по одному тому, что в головном мозгу человека имеется примерно 1010 нейронов, тогда как транзисторов черепная коробка могла бы вместить всего несколько сотен.

Растениям нейроны не нужны, потому что они могут обеспечить свое существование, не сходя с места; однако у преобладающего большинства животных нейроны имеются. Возможно, нейрон был “открыт” на ранних стадиях эволюции животных и унаследован всеми их группами, но не исключено, что его “открытие” происходило независимо несколько раз.

В своей основе нейроны – это просто клетки. Подобно другим клеткам, они содержат ядро и хромосомы. Но их клеточные стенки вытянуты в виде длинных тонких отростков, похожих на провода. Часто у нейрона имеется один особенно длинный “провод”, называемый аксоном. Хотя в ширину аксон имеет микроскопические размеры, в длину он может достигать нескольких метров: например, у жирафа есть аксоны, которые тянутся во всю длину его шеи. Аксоны обычно собраны в пучки, образуя толстые многожильные кабели, называемые нервами. Нервы тянутся от одной части тела к другой, передавая информацию, подобно магистральным телефонным кабелям. У других нейронов аксоны короткие и не выходят за пределы плотных скоплений нервной ткани, называемых ганглиями, а в тех случаях, когда они очень большие – мозгом. В функциональном плане мозг можно рассматривать как аналог компьютера[15]. Мозг и компьютер аналогичны, поскольку как тот, так и другой после анализа поступающей извне сложной информации и сопоставления ее с информацией, хранящейся в памяти, генерируют на выходе комплексную информацию.

Главный способ, которым мозг помогает машинам выживания достигнуть успеха, – это регуляция и координация мышечных сокращений. Для этого необходимы провода, идущие к мышцам. Провода эти называются двигательными (моторными) нервами. Но регуляция и координация мышечных сокращений может надежно обеспечить сохранность генов лишь в том случае, если ритм этих сокращений каким-то образом соотносится с ритмом событий, происходящих во внешнем мире. Важно, чтобы челюстные мышцы сокращались только тогда, когда между челюстями находится что-то, что стоило бы откусить, а мышцы ноги сокращались так, как это необходимо для бега, когда надо бежать за кем-то или от кого-то. Поэтому естественный отбор благоприятствовал сохранению животных, приобретших органы чувств – приспособления, позволяющие транслировать образы происходящих во внешнем мире физических событий в импульсный код нейронов. Головной мозг соединен с органами чувств – глазами, ушами, вкусовыми луковицами и тому подобным – проводами, называемыми чувствительными (сенсорными) нервами. Деятельность сенсорных систем особенно непостижима, потому что они достигают гораздо большего искусства в распознавании образов, чем самые лучшие и дорогостоящие машины, созданные человеком. Если бы этого не было, все машинистки остались бы без работы: их место заняли бы машины, распознающие устную речь, или машины, способные считывать рукописный текст. Но машинистки будут нужны еще в течение многих десятков лет.

Возможно, когда-то давно органы чувств были связаны с мышцами более или менее напрямую. В сущности ныне живущие актинии недалеко ушли от такой организации нервно-мышечной системы, поскольку для их образа жизни она достаточно эффективна. Но для обеспечения более сложных, непрямых связей между координацией во времени мышечных сокращении в зависимости от событий, происходящих во внешнем мире, необходим в качестве посредника мозг того или иного рода. Заметным продвижением вперед было “изобретение” в процессе эволюции памяти. Благодаря памяти на координацию мышечных сокращений могут оказывать влияние не только недавние события, но и события весьма далекого прошлого. Память, или накопитель, составляет существенную часть цифровой вычислительной машины. Память компьютера более надежна, чем память человека, но она обладает меньшей емкостью и значительно менее изобретательна в отношении способов поиска информации.

Одно из самых удивительных свойств поведения машины выживания – это ее явная целенаправленность. Я здесь имею в виду не только то, что она, по-видимому, точно рассчитана на обеспечение выживания генов животного, хотя, разумеется, на это она рассчитана. Я имею в виду более близкую аналогию с целенаправленным поведением человека. Когда мы наблюдаем за животным, занятым “поиском” пищи, брачного партнера или потерявшегося детеныша, мы невольно приписываем ему некие субъективные ощущения, которые испытываем мы сами при подобного рода поисках. Это может быть “желание” получить какой-то предмет, его “мысленный образ”, “цель” или “намерение”. Каждый из нас знает на основании результатов самоанализа, что по крайней мере у одной современной машины выживания эта целенаправленность привела в процессе эволюции к возникновению “самосознания”. Я недостаточно силен в философии, чтобы обсуждать смысл всего этого, но к счастью это не имеет значения для наших целей, поскольку можно говорить о машинах, которые ведут себя так, как если бы ими двигала какая-то цель, оставляя открытым вопрос о том, действительно ли они наделены сознанием. Эти машины в своей основе очень просты, а принципы бессознательного целенаправленного поведения относятся к числу тривиальных инженерных решений. Классическим примером служит регулятор Уатта, или центробежный регулятор паровой машины.

Лежащий в основе всего этого принцип носит название отрицательной обратной связи. Обычно это происходит следующим образом. “Целеустремленная машина”, то есть машина или предмет, ведущая себя так, как если бы она стремилась к некой осознанной цели, снабжена тем или иным измерительным устройством, которое регистрирует несоответствие между текущим и “желаемым” состояниями. Оно сделано таким образом, что чем больше несоответствие, тем сильнее воздействие на машину. В результате машина автоматически стремится уменьшить несоответствие – вот почему этот принцип называют отрицательной обратной связью, – и по достижении “желаемого” состояния обеспечивается равновесный режим работы. Регулятор Уатта состоит из двух шариков, которые вращаются паровой машиной. Шарики расположены на концах качающихся рычагов. Чем быстрее вращаются шарики, тем дальше расходятся рычаги, стремясь занять горизонтальное положение под действием центробежной силы, которой противодействует гравитация. Рычаги связаны с клапаном подачи пара таким образом, что подача пара уменьшается, когда рычаги приближаются к горизонтальному положению. Так, если машина работает слишком быстро, подача пара уменьшается и ее ход замедляется. Если же ход замедляется слишком сильно, подача пара клапаном автоматически увеличивается и скорость повышается. В таких “целеустремленных” машинах часто возникают колебания, обусловленные перерегулированием или задержками во времени, и дело чести инженеров ввести в них дополнительные устройства, уменьшающие эти колебания.

“Желаемое” состояние регулятора Уатта – определенная скорость вращения. Совершенно очевидно, что регулятор не стремится к этому сознательно. “Цель” машины определяется просто как то состояние, к которому она приближается. В современных машинах используются результаты, полученные в процессе дальнейшего развития таких принципов, как отрицательная обратная связь, чтобы добиться гораздо более сложного поведения, приближающегося к поведению живых систем. Например, управляемые ракеты как бы активно ищут свою цель и, когда она оказывается в пределах досягаемости, как бы преследуют ее, реагируя на все повороты и изменения направления, которые она предпринимает, чтобы избежать встречи с ракетой, а иногда даже “предсказывая” или “предвидя” их. В детали того, как это достигается, мы вдаваться не будем. В этом участвует несколько различных типов отрицательной обратной связи и другие принципы, хорошо знакомые инженерам и, как теперь стало известно, широко используемые живыми организмами. Нет необходимости постулировать у ракеты нечто, хотя бы отдаленно приближающееся к сознанию, несмотря на то, что обывателю, наблюдающему за ее осмотрительным и целенаправленным поведением, трудно бывает поверить, что в ней нет человека, непосредственно управляющего ее полетом.

Широко распространено неверное представление о том, что если такая машина, как управляемая ракета, была спроектирована и построена человеком, то все ее действия должны непосредственно контролироваться человеком. Другой вариант этой ошибки – утверждение, что “компьютеры на самом деле не играют в шахматы, потому что они могут делать только то, что им приказывает оператор”. Нам важно понять, почему такие утверждения ошибочны, так как они оказывают влияние на наши представления о том, в “каком смысле можно говорить о контроле” над поведением со стороны генов. Игра компьютера в шахматы служит хорошим примером, так что я вкратце остановлюсь на нем.

Компьютеры пока еще не играют в шахматы так хорошо, как гроссмейстеры, но они уже достигли уровня хороших любителей. Строго говоря, этого уровня достигли программы, потому что шахматной программе все равно, на каком компьютере она будет демонстрировать свои способности. В чем же заключается роль составителя программы? Прежде всего он ни в коем случае не манипулирует компьютером шаг за шагом, как кукольник, дергающий за веревочки. Это было бы просто жульничеством. Он пишет программу, закладывая ее в компьютер, после чего компьютер действует самостоятельно: человек больше не вмешивается, если не считать того, что противник вводит в машину свои ходы. Но, быть может, составитель программы предвидит все комбинации, которые возникают на шахматной доске, и снабжает компьютер длинным списком нужных ходов для каждого возможного случая? Безусловно, нет, потому что число возможных комбинаций в шахматной игре невероятно велико и такой список пришлось бы составлять до конца света. По той же причине компьютер нельзя запрограммировать таким образом, чтобы он мог перебирать все возможные ходы и все последствия, к которым они могут привести, до тех пор, пока не найдет стратегию, ведущую к выигрышу. Число возможных шахматных партий больше, чем число атомов в нашей Галактике. Ограничим этим свои замечания о невозможности разрешить такую проблему, как составление компьютерных программ для игры в шахматы, тривиальными способами. Это действительно чрезвычайно трудная проблема, и едва ли следует удивляться тому, что лучшие программы все еще не достигли гроссмейстерского уровня.

В сущности роль программиста сходна с ролью отца, обучающего своего сына шахматной игре. Он показывает компьютеру основные ходы, причем не с каждой отдельной возможной позиции, а в виде более лаконичных правил. Он не говорит на простом общепонятном языке “слоны ходят по диагоналям”, но прибегает к их математическому эквиваленту, например (хотя и несколько короче): “Новые координаты слона выводятся из его прежних координат прибавлением одной и той же константы, хотя не обязательно с одинаковым знаком, к прежней координате x и прежней координате y”. Затем он может внести в программу какой-нибудь совет, сформулированный на том же математическом или логическом языке, но сводящийся, если его выразить общедоступным языком, к таким подсказкам, как “не оставляйте короля открытым”, или к таким полезным хитростям, как “сделать вилку” конем. Все эти подробности очень любопытны, но они увели бы нас слишком далеко в сторону. Суть же состоит в следующем: во время игры компьютер предоставлен самому себе, и все, что может сделать программист, – как можно лучше заранее обеспечить компьютер, снабдив его в соответствующих пропорциях перечнями специальных сведений и указаниями относительно стратегий и методов.

Гены регулируют поведение своих машин выживания не непосредственно, дергая пальцами за веревочки подобно кукольнику, а косвенно, подобно составителю программы для компьютера. Все, что они могут сделать, – заранее снабдить свои машины необходимыми инструкциями. Затем машины действуют самостоятельно, а гены пассивно сидят внутри них. Почему они так пассивны? Почему они не берут в свои руки вожжи и не руководят процессом шаг за шагом? Это невозможно вследствие проблем, порождаемых отставанием во времени. Лучше всего это объяснить, прибегнув к еще одной аналогии, заимствованной из научной фантастики. “Андромеда” Фреда Хойла и Джона Эллиота – увлекательная книга и, подобно всем хорошим научно-фантастическим произведениям, затрагивает несколько интересных научных проблем. Как это ни странно, о самой важной из них в ней явно не говорится. Читателю предоставляется возможность обратиться к собственному воображению. Думаю, авторы не станут возражать, если я сформулирую здесь эту проблему.

В созвездии Андромеды, на расстоянии двухсот световых лет от Земли, существует некая цивилизация[16]. Ее представители хотели бы распространить свою культуру в далекие миры. Как это лучше сделать? Непосредственное посещение других миров исключается. Скорость света налагает теоретический верхний предел скорости, с которой можно перемещаться из одного места во Вселенной в другое, а на практике предельная скорость перемещения гораздо ниже. Кроме того, возможно, что существует не так уж много миров, которые стоило бы посетить, да и как узнать, в каком направлении следует лететь? Лучшим средством связи с остальным миром является радио, поскольку, если вы располагаете достаточным количеством энергии, чтобы посылать сигналы во всех направлениях, а не излучать их в одном определенном направлении, то можно связаться с очень многими мирами (их число возрастает пропорционально квадрату расстояния, на которое распространяется сигнал). Радиоволны распространяются со скоростью света, а это означает, что сигнал, посланный с Андромеды, достигнет Земли через двести лет. Беда в том, что при таких расстояниях невозможно вести разговор. Даже если не принимать во внимание то обстоятельство, что люди, передающие каждое последующее сообщение, будут отделены от авторов предыдущего двенадцатью поколениями, переговоры на такие расстояния представляются просто пустой тратой времени.

Эта проблема скоро реально встанет перед нами: радиоволны доходят с Земли до Марса примерно за четыре минуты. Не вызывает сомнений, что космонавтам придется отказаться от привычки обмениваться короткими предложениями и переходить на длинные монологи, больше похожие на письма, чем на разговоры. Другой пример, приводимый Роджером Пейном, касается своеобразных свойств акустики моря, вследствие которых чрезвычайно громкая “песня” некоторых китов теоретически могла бы быть слышна по всему земному шару при условии, что киты будут плыть на определенной глубине. Мы не знаем, действительно ли они общаются между собой, находясь на больших расстояниях друг от друга, но если они это делают, то перед ними должны вставать те же затруднения, что у астронавта на Марсе. На то, чтобы песня пересекла Атлантический океан, и на получение ответа должно уйти, исходя из скорости распространения звука в воде, примерно два часа. Именно этим я предлагаю объяснить тот факт, что некоторые киты могут выдавать непрерывный монолог, не повторяясь, на протяжении целых восьми минут. Затем они начинают песню сначала и повторяют ее до конца, и так много раз подряд, причем каждый полный цикл длится примерно восемь минут.

Жители Андромеды в романе делали то же самое. Поскольку ожидать ответа не имело смысла, они включали все, что им хотелось сказать, в одно длинное непрерывное сообщение и посылали его в космос, повторяя вновь и вновь, причем цикл занимал несколько месяцев. Их информация сильно отличалась от той, которой обмениваются киты. Жители Андромеды передавали закодированные инструкции для построения и программирования гигантского компьютера. Конечно, эти инструкции были сформулированы не на языке землян, однако квалифицированный криптограф может расшифровать почти любой код, особенно если его создатели позаботились о том, чтобы сделать это было легко. Сообщение это было зарегистрировано радиотелескопом Джодрелла Банка, его в конце концов удалось расшифровать, построить компьютер и запустить программу. Результаты были почти катастрофическими для человечества, ибо намерения андромедян были отнюдь не альтруистичны и компьютер успел продвинуться далеко вперед по пути к диктатуре над всем миром, прежде чем герой наконец покончил с ним при помощи топора.

С нашей точки зрения, интерес представляет вопрос о том, в каком смысле можно говорить, что андромедяне манипулировали происходящими на Земле событиями. Они не могли непосредственно контролировать действия компьютера каждую минуту. В сущности они даже не могли знать, что компьютер удалось построить, так как сведения об этом могли дойти до них лишь спустя двести лет. Компьютер принимал решения и действовал совершенно самостоятельно. Он даже не мог обращаться к хозяевам за инструкциями по своей общей политике. Все необходимые инструкции должны были быть заложены в него заранее, чтобы преодолеть трудности, связанные с существованием незыблемой двухсотлетней преграды. В принципе его следовало запрограммировать точно так же, как шахматный компьютер, но наделить большей гибкостью и способностью воспринимать местную информацию. Его программа должна была быть создана таким образом, чтобы она могла работать не только на Земле, но и в любом другом мире с достаточно развитой техникой, в любой другой группе миров, условия которых андромедяне знать не могли.

Точно так же, как андромедянам надо было иметь на Земле компьютер, который бы изо дня в день принимал за них решения, нашим генам необходимо было создать мозг. Но гены – это не только андромедяне, пославшие на Землю закодированные инструкции, а одновременно и сами инструкции. Они не могут непосредственно дергать за веревочки, которые управляют куклами, по той же причине – из-за отставания во времени. Гены оказывают свое действие, регулируя белковый синтез. Это очень мощный способ воздействия на мир, но способ медленный. Приходится месяцами терпеливо дергать за белковые веревочки, чтобы создать зародыш. Главная же особенность поведения – высокая скорость. Время здесь измеряется не месяцами, а секундами и долями секунды. Что-то происходит в окружающем мире. Над головой промелькнула сова, шелест высокой травы выдал присутствие жертвы, и за несколько тысячных долей секунды нервная система вступила в действие, мышцы напряглись – прыжок, и чья-то жизнь спасена или прервалась. Гены не способны на такие быстрые реакции. Подобно андромедянам, они могут лишь выложиться до конца, заранее создав для себя быстродействующий компьютер и снабдив его правилами и “советами”, чтобы он мог справляться с таким количеством событий, какое они смогут “предвидеть”. Но жизнь, подобно шахматной игре, преподносит слишком много сюрпризов, чтобы можно было предусмотреть их все. Подобно шахматной программе, гены должны “инструктировать” свои машины выживания в отношении не деталей, а общих стратегий и превратностей такой сложной профессии, как жизнь[17].

Как указывает Джон З. Янг, гены должны обладать способностью, аналогичной предвидению. В тот период, когда эмбриональная машина выживания только строится, опасности и проблемы, поджидающие ее в будущей жизни, неизвестны. Кто может сказать, какие хищники сидят в засаде и за какими кустами или какая быстроногая жертва промчится, бросаясь из стороны в сторону, по своей тропе? Этого не знает ни один пророк и ни один ген. Можно, однако, сделать некоторые общие предсказания. Гены белого медведя могут, не рискуя ошибиться, предсказать, что их еще не родившейся машине выживания придется жить в холоде. Они не думают об этом как о пророчестве. Они вообще не думают, а просто создают толстую меховую шубу, потому что делали это раньше, когда находились в других телах, и потому что именно благодаря этому они еще сохранились в генофонде. Они предвидят также, что земля вокруг будет покрыта снегом, и это их предвидение реализуется в белой, а следовательно покровительственной, окраске меха. Если бы климат Арктики изменялся так быстро, что медвежонок родился бы на свет в тропической пустыне, то предсказания генов оказались бы ошибочными и им пришлось бы платить штраф: медвежонок умер бы, а вместе с ним и сами гены.

В нашем сложном мире делать предсказания – занятие очень ненадежное. Любое решение, принимаемое машиной выживания, подобно азартной игре, и гены обязаны заранее запрограммировать мозг таким образом, чтобы он в среднем принимал решения, которые обеспечивали бы выигрыш. Валюта, имеющая хождение в эволюционном казино, – это выживание, строго говоря – выживание генов, но во многих отношениях разумным приближением представляется выживание индивидуума. Если животное спускается к роднику, чтобы напиться, оно повышает для себя риск стать жертвой хищников, которые обеспечивают себя пищей, подстерегая жертву около водопоев. Если же оно не спустится к роднику, то в конце концов умрет от жажды. Жертва рискует в любом случае, и ей следует принять такое решение, которое максимизирует шансы ее генов на долгосрочное выживание. Быть может, лучше всего отложить посещение родника до тех пор, пока жажда не станет невыносимой, а тогда пойти и напиться как следует, чтобы хватило надолго. Таким образом можно сократить число посещений родника, но когда животное припадет к воде, ему придется пробыть у водоема довольно долго и притом с опущенной головой. Альтернативная стратегия может состоять в том, чтобы пить понемножку и часто, пробегая мимо источника и быстро выпивая несколько глотков воды. Какая стратегия окажется лучшей, зависит от всевозможных сложных вещей, и не в последнюю очередь – от охотничьей повадки хищников, которая сама в процессе эволюции достигла, с их точки зрения, максимальной эффективности. Необходимо каким-то образом взвесить все “за” и “против”. Но, разумеется, мы далеки от мысли, что животные сознательно производят какие-то расчеты. Нам достаточно принять, что те индивидуумы, гены которых создают мозг, способный выбрать правильную стратегию, сразу же повышают свои шансы на выживание и, следовательно, на размножение этих самых генов.

Продолжим метафору азартной игры чуть дальше. Игрок должен думать о трех главных вещах: о ставке, шансах на выигрыш и о самом выигрыше. Если выигрыш очень велик, он готов рискнуть на большую ставку. Игрок, который рискует поставить все, чем он располагает, на одну карту, может выиграть очень много. Он может также потерять очень много, однако в среднем такие игроки выигрывают и проигрывают не чаще и не реже, чем игроки, делающие небольшие ставки и получающие небольшие выигрыши. Аналогичным примером может служить сравнение между готовыми рисковать и осмотрительными вкладчиками на фондовой бирже. В некотором смысле фондовая биржа – даже более подходящая аналогия, чем казино, потому что игра в казино организована таким образом, чтобы банк не оказался в проигрыше (строго говоря, это означает, что те, кто играет по-крупному, в среднем к концу игры становятся беднее, чем те, кто ограничивается небольшими ставками, причем последние оказываются беднее тех, кто не играет вовсе. Но это происходит по причине, не относящейся к нашим рассуждениям). Если оставить это в стороне, то игра как по высоким, так и по низким ставкам кажется разумной. Есть ли среди животных индивидуумы, играющие по-крупному, и другие, ведущие более осторожную игру? В главе 9 мы увидим, что нередко можно представлять себе самцов как азартных игроков, рискующих делать крупные ставки, а самок – как играющих наверняка. Особенно это относится к полигамным видам, у которых самцы конкурируют за самок. Натуралисты, читая эту книгу, смогут вспомнить о видах, которые можно описать как азартных игроков, рискующих по-крупному, и о других видах, играющих более осторожно. Теперь я хочу вернуться к более общей теме о том, как гены делают “предсказания” о будущем.

Один из способов, позволяющих генам решать проблему предсказаний при достаточной непредсказуемости условий среды, состоит в том, чтобы снабдить машину выживания способностью к обучению. Соответствующая программа может носить форму следующих инструкций: “Вот перечень ощущений, определяемых как вознаграждение: сладкий вкус во рту, оргазм, комфортная температура, вид улыбающегося ребенка. И вот перечень неприятных ощущений: разного рода боль, тошнота, чувство голода, плачущий ребенок. Если вы совершили какой-то поступок, за которым последовала одна из этих неприятностей, не делайте этого больше, но повторяйте все те действия, за которыми последовали вознаграждения”. Преимущество такого рода программирования состоит в том, что оно сильно сокращает число правил, которые пришлось бы включать в программу. Кроме того, оно позволяет справляться с изменениями среды, которые невозможно предсказать во всех подробностях. Вместе с тем необходимость в некоторых предсказаниях не снимается. В нашем примере гены предсказывают, что сладкий вкус и оргазм – это “хорошо” в том смысле, что потребление сахара и копуляция, вероятно, будут способствовать выживанию генов. Однако при этом не предусматриваются такие возможности, как потребление сахарина и мастурбация, не учитывается также опасность чрезмерного потребления сахара, количество которого в нашей среде противоестественно велико.

Стратегии обучения использовались в некоторых шахматных программах. Эти программы совершенствуются, когда компьютер играет против человека или против других компьютеров. Хотя в программу заложен целый набор правил и тактик, в их процедуре принятия решения остается небольшой вероятностный элемент, и когда они выигрывают партию, они слегка повышают вес своей тактики, предшествовавшей победе, так что вероятность того, что они в следующий раз выберут ту же самую тактику, немного повышается.

Один из самых интересных способов предсказывать будущее – моделирование. Генерал, желающий узнать, окажется ли данный план военных действий лучше других, сталкивается с проблемой предвидения. Он должен учитывать такие неопределенные факторы, как погода, моральное состояние собственных войск и возможные контрмеры противника. Один из способов установить, хорош ли план, заключается в том, чтобы испробовать его на деле, однако испытывать таким образом все задуманные планы нежелательно уже хотя бы потому, что число молодых людей, готовых умереть за свою страну, не бесконечно, а число возможных планов очень велико. Лучше испытать различные планы на учебных маневрах, чем в настоящем бою. Это могут быть полномасштабные маневры, где “Северная страна” воюет против “Южной страны” с помощью холостых боеприпасов, но даже такие маневры требуют больших материальных затрат и времени. С меньшими затратами можно моделировать военные действия, перемещая по карте оловянных солдатиков и игрушечные танки.

За последнее время компьютеры взяли на себя большую часть функций по моделированию не только в области военной стратегии, но и во всех тех областях, где необходимо предсказывать будущее, – в экономике, экологии, социологии и многих других. Метод состоит в следующем. В компьютер закладывают модель какого-нибудь аспекта реального мира. Это не означает, что, заглянув в компьютер, вы увидите миниатюрный макет, имеющий ту же форму, что и моделируемый объект. В памяти шахматного компьютера нет “мысленной картины”, в которой можно распознать доску с расставленными на ней слонами и пешками. Шахматная доска и расположение на ней фигур будут представлены рядами чисел, закодированных состояниями электронных устройств. Для нас карта – это миниатюрная, выполненная в определенном масштабе модель какой-то части земного шара, втиснутая в два измерения. В компьютере карта может быть представлена в виде перечня городов и других точек с указанием двух чисел для каждого – широты и долготы. Неважно, однако, в какой именно форме содержится модель нашего мира в компьютере, лишь бы форма модели давала ему возможность управлять и манипулировать ею, экспериментировать и сообщать о результатах людям-операторам в понятных им терминах. На моделях можно выигрывать и проигрывать сражения, поднимать в воздух самолеты и устраивать авиакатастрофы, проводить экономическую политику, ведущую к процветанию или разорению. Во всех случаях весь процесс происходит внутри компьютера, занимая очень малую долю того времени, которое он занял бы в реальной жизни. Конечно, модели бывают хорошие и плохие, и даже хорошие модели – это только приближение. Какой бы хорошей ни была модель, она не может точно предсказать, что случится в действительности, однако хорошая модель во сто крат предпочтительней проб и ошибок вслепую. Моделирование можно назвать некой заменой метода проб и ошибок – термин, к сожалению, давно уже присвоенный “крысиными” психологами.

Если моделирование – удачная идея, то следует ожидать, что машины выживания должны были открыть ее первыми. Ведь это они придумали многие другие приспособления, используемые человеком в технике, сделав это задолго до того, как сам человек вышел на сцену: фокусирующая линза и параболический отражатель, гармонический анализ звуковых волн, дистанционное управление, звуковая локация, буферная память для поступающей информации и бесчисленные другие приспособления с длинными названиями, в детальном рассмотрении которых нет необходимости. Вернемся к моделированию. Когда вам предстоит принять трудное решение, касающееся неизвестных величин в будущем, вы прибегаете к некой форме моделирования. Вы стараетесь представить себе, что произойдет в случае принятия каждой из возможных альтернатив. Вы строите мысленную модель не всего на свете, а только ограниченного набора сущностей, которые, по вашему мнению, имеют отношение к делу. Вы можете ясно видеть их мысленным взором или же можете видеть их традиционные абстракции и манипулировать ими. В любом случае маловероятно, что где-то в вашем мозгу находится настоящая трехмерная модель событий, которые вы себе представляете. Однако точно так же, как в случае с компьютером, детали того, каким образом ваш мозг представляет себе модель окружающего мира, менее важны, чем тот факт, что он способен использовать ее для предсказания возможных событий. Машины выживания, способные моделировать будущее, продвинулись на несколько шагов вперед по сравнению с теми, которые способны обучаться только путем проб и ошибок. Недостаток непосредственной пробы в том, что на это уходят время и энергия. Недостаток непосредственной ошибки в том, что она нередко оказывается фатальной. Моделирование и безопаснее, и быстрее.

Эволюция способности к моделированию, очевидно, привела в конечном итоге к субъективному осознанию. Почему это должно было произойти, представляется мне глубочайшей тайной, стоящей перед современной биологией. Нет оснований полагать, что компьютеры действуют осознанно, когда они что-нибудь моделируют, хотя нам приходится допускать, что в будущем они, возможно, станут сознавать свои действия. Быть может, осознание возникает тогда, когда модель мира, создаваемая мозгом, достигает такой полноты, что ему приходится включать в нее модель самого себя[18]. Очевидно, что конечности и туловище машины выживания должны составлять важную часть моделируемого мира. Исходя из тех же соображений следует полагать, что и само моделирование – это часть того мира, который предстоит моделировать. Все это действительно можно назвать “самосознанием”, но я не считаю такое объяснение эволюции сознания вполне удовлетворительным. Оно удовлетворительно лишь отчасти, потому что включает в себя бесконечную регрессию – если существует модель модели, то почему бы не быть модели модели модели…?

Каковы бы ни были философские проблемы, порождаемые сознанием, в рамках нашего изложения его можно представить как кульминацию некого эволюционного направления к независимости машин выживания, способных принимать решение независимо от своих верховных хозяев-генов. Мозг теперь не только изо дня в день занимается всеми делами машин выживания. Он способен предсказывать будущее и действовать соответственно. Эти машины могут даже взбунтоваться против диктата генов, например отказываясь иметь столько детей, сколько они в состоянии иметь. Но в этом отношении человек занимает, как мы увидим, особое положение.

Какое все это имеет отношение к альтруизму и эгоизму? Я пытаюсь сформулировать идею, что поведение животного, будь оно альтруистичным или эгоистичным, находится лишь под косвенным, но тем не менее весьма действенным, контролем генов. Диктуя, как должны быть построены машины выживания и их нервные системы, гены в конечном счете держат в своих руках верховную власть над поведением. Однако в каждый данный момент решения о том, что следует делать дальше, принимает нервная система. Гены вырабатывают политику, а мозг является исполнителем. Но по мере того, как мозг достигает все более высокого уровня развития, он все в большей степени берет на себя принятие решений, используя при этом такие приемы, как обучение и моделирование. Логическим завершением этого направления, не достигнутым ни одним видом, было бы положение, при котором гены дают машине выживания одну всеобъемлющую инструкцию: делай то, что считаешь самым важным для нашего выживания.

Все аналогии с компьютерами и принятием решений людьми превосходны. Однако теперь нам следует опуститься на землю и вспомнить, что эволюция на самом деле происходит постепенно, шаг за шагом, путем дифференциального выживания генов, входящих в данный генофонд. Поэтому для того, чтобы тот или иной тип поведения – альтруистичный или эгоистичный – мог эволюционировать, необходимо, чтобы ген, определяющий этот тип поведения, сохранялся в генофонде более успешно, чем его ген-соперник, то есть аллель, определяющий какое-то другое поведение. Ген альтруистичного поведения – это любой ген, воздействующий на развитие нервной системы таким образом, чтобы сделать вероятным ее альтруистичное поведение[19]. Имеются ли какие-либо экспериментальные данные о генетическом наследовании альтруистичного поведения? Таких данных нет, но это вряд ли следует считать удивительным, поскольку генетикой поведения вообще занимаются мало. Рассмотрим вместо этого исследование одного типа поведения, альтруистичность которого неочевидна, но которое обладает достаточной сложностью, чтобы представлять интерес. Он служит моделью того, как могло бы наследоваться альтруистичное поведение.

Медоносная пчела подвержена инфекционному заболеванию, известному под названием “гнилец пчел”. Оно поражает личинок в ячейках. Среди одомашненных пород, разводимых пасечниками, одни более подвержены гнильцу, чем другие, и оказалось, что это различие, по крайней мере в некоторых случаях, связано с поведением. Существуют линии пчел с повышенной санитарной активностью, которые быстро подрубают корни эпидемии: рабочие особи выявляют зараженных личинок, вытаскивают их из ячеек и выбрасывают из улья. Чувствительность к заболеванию других линий обусловлена тем, что они не практикуют такое оздоровительное детоубийство. Связанное с этим актом поведение на самом деле довольно сложное. Рабочие пчелы “санитарных” линий должны обнаружить все ячейки с больными личинками, снять с них восковые крышечки, вытащить личинку, протащить ее через леток и выбросить на мусорную свалку.

Проведение на пчелах генетических экспериментов довольно затруднительно по разным причинам. Сами рабочие пчелы в норме не размножаются, так что приходится скрещивать матку одной линии с трутнем (= самец) другой, а затем наблюдать за поведением дочерних рабочих пчел. Именно это и сделал У. Ротенбюлер. Он обнаружил, что в дочерних ульях первого гибридного поколения все пчелы вели себя как представители обычных линий. Повышенная санитарная активность их родительской особи казалась утраченной, однако, как показал дальнейший ход событий, ген санитарной активности сохранялся у них, но находился в рецессивном состоянии, подобно гену голубых глаз у человека. Когда Ротенбюлер провел возвратное скрещивание гибридов первого поколения с чистой “санитарной” линией (разумеется, опять используя маток и трутней), он получил замечательные результаты. Дочерние ульи распались на три группы. В одной группе наблюдалось безукоризненное “санитарное” поведение, в другой оно совершенно отсутствовало, а в третьей было половинчатым. В этой последней группе рабочие пчелы вскрывали восковые ячейки, содержавшие больных личинок, но не доводили дело до конца, то есть не выбрасывали их. Ротенбюлер высказал предположение, что у пчел имеются два гена: один определяет раскрывание ячеек, а другой – выбрасывание личинок. Нормальные “санитарные” линии несут оба гена, а восприимчивые линии – аллели (соперников) обоих этих генов. Гибриды, осуществляющие лишь первую половину действий, вероятно, содержат только ген вскрывания ячеек (в двойной дозе), но лишены гена выбрасывания личинок. Ротенбюлер предположил, что в его экспериментальной группе, казалось бы, совершенно “несанитарных” пчел могла быть подгруппа, обладавшая геном выбрасывания личинок, но неспособная проявить это, поскольку у ее особей не было гена вскрывания ячеек. Ротенбюлер доказал это весьма изящным способом: он вскрывал ячейки сам. Конечно, после этого у половины пчел, казавшихся “несанитарными”, стало наблюдаться совершенно нормальное поведение, то есть выбрасывание зараженных личинок[20].

 

Эта история иллюстрирует ряд важных моментов, выявившихся в предыдущей главе. Она показывает, что можно с полным правом говорить о “гене, определяющем такое-то поведение”, даже если мы не имеем ни малейшего представления об эмбриологических причинах, ведущих от гена к поведению. Может даже оказаться, что в цепи причин участвует научение. Например, эффект гена, определяющего вскрывание ячеек, может зависеть от того, что пчелы приобретают пристрастие к вкусу зараженного воска. Это означает, что им будет доставлять удовольствие поедание восковых крышечек, прикрывающих жертвы заболевания, и что они поэтому будут стремиться повторять его. Даже если ген действует именно таким образом, он тем не менее остается геном “вскрывания ячеек”, но только в том случае, если при прочих равных условиях пчелы, обладающие этим геном, в конце концов вскрывают ячейки, а пчелы, лишенные его, не делают этого.

Затем эта история иллюстрирует, что гены “кооперируются” в своих воздействиях на поведение “коммунальной” машины выживания. Ген выбрасывания личинок бесполезен, если его не сопровождает ген вскрывания ячеек, и наоборот. А между тем, как показывают генетические эксперименты, эти два гена вполне могут разделяться, путешествуя порознь из поколения в поколение. В том, что касается их полезной деятельности, их можно рассматривать как одну кооперативную единицу, но в качестве реплицирующихся генов это два свободных и независимых фактора.

В порядке обсуждения следовало бы поразмышлять о генах “для” выполнения всякого рода маловероятных задач. Если я начну говорить о гипотетическом гене “для спасения тонущего компаньона”, а вы сочтете такую концепцию неправдоподобной, вспомните историю “санитарных” пчел. Вспомните, что мы не считаем гены единственной причиной, порождающей все сложные мышечные сокращения, сенсорные интеграции и даже сознательные решения, участвующие в спасении тонущего человека. Мы ничего не говорим о том, участвуют ли в развитии такого поведения научение, опыт или влияния окружающей среды. Вы должны лишь допустить, что один ген – при прочих равных условиях и при наличии множества других важных генов и внешних факторов – с большей вероятностью обеспечит данному телу возможность спасти тонущего человека, чем аллель этого гена. Может оказаться, что в основе этого различия между двумя генами лежит небольшое различие по какой-то простой количественной переменной. Детали процесса эмбрионального развития, какими бы интересными они ни были, не имеют отношения к эволюционным соображениям. Очень хорошо выразил это Конрад Лоренц.

Гены являются главными программистами, они составляют программу собственного существования. О них судят на основании того, сколь успешно они справляются со всеми опасностями, с которыми сталкиваются в жизни их машины выживания, а в роли бесстрастного судьи выступает само выживание. Позднее мы рассмотрим, какими способами поведение, кажущееся альтруистичным, может благоприятствовать выживанию генов. Совершенно очевидно, однако, что самое важное для машины выживания и для мозга, принимающего за нее решения, это выживание индивидуума и его репродукция. Все гены, образующие “колонию”, безоговорочно согласятся с этим. Поэтому животные затрачивают так много усилий на поиски и поимку пищи; на то, чтобы не оказаться самим съеденными или пойманными; на то, чтобы избежать болезней и несчастных случаев; защитить себя от неблагоприятных климатических условий; найти представителя противоположного пола и склонить его к спариванию; даровать своим потомкам те преимущества, которыми пользуются они сами. Я не стану приводить примеры – чтобы получить их, достаточно внимательно взглянуть на первое встретившееся вам животное. Но я хочу упомянуть об одном особом типе поведения, потому что нам придется снова говорить о нем, когда мы будем рассматривать альтруизм и эгоизм. Это поведение, которому можно дать широкое название коммуникации[21].

Можно говорить о коммуникации одной машины выживания с другой, когда первая оказывает влияние на поведение второй или на состояние ее нервной системы. Это не такое определение, которое мне хотелось бы сохранить на долгое время, но оно вполне пригодно для наших нынешних целей. Под “влиянием” я имею в виду прямое каузальное влияние. Примеров коммуникации предостаточно: пение птиц, лягушек и сверчков; виляние хвостом и вздыбливание шерсти у собак; “улыбка” у шимпанзе; жесты и язык у человека. Многие действия машин выживания способствуют благополучию их генов косвенно, через воздействие на поведение других машин выживания. Животные затрачивают много усилий, чтобы сделать эту коммуникацию эффективной. Пение птиц очаровывает и озадачивает людей на протяжении многих поколений. Я уже говорил о еще более затейливой и таинственной песне горбатого кита, с ее широчайшим диапазоном, охватывающим все частоты – от инфразвукового грохотания до ультразвукового писка, включая область частот, воспринимаемых человеком. Медведки поют, сидя в норке, которой они придают форму раструба или мегафона, усиливающего громкость почти до трубной. Пчелы танцуют в темноте улья, сообщая таким образом другим пчелам точные сведения о направлении, в котором следует лететь за кормом, и о расстоянии до него – искусство коммуникации, с которым может соперничать только человеческая речь.

Традиционная точка зрения этологов состоит в том, что коммуникационные сигналы возникают в процессе эволюции на взаимное благо как того, кто их посылает, так и того, кто их принимает. Например, цыплята оказывают воздействие на поведение своей матери, сообщая ей высоким пронзительным писком, что они заблудились или замерзли. Обычно мать, услышав писк, немедленно отправляется за цыпленком и приводит его назад к остальному выводку. Можно было бы сказать, что такое поведение развилось к взаимной выгоде в том смысле, что естественный отбор благоприятствовал сохранению как цыплят, которые пищат, отстав от выводка, так и матерей, должным образом реагирующих на писк.

При желании (на самом деле в этом нет необходимости) можно считать, что такие сигналы, как писк, имеют определенный смысл или содержат информацию – в данном случае “я заблудился”. Крик тревоги у мелких воробьиных, о которых я упоминал в главе 1, может означать: “Здесь поблизости ястреб”. Животные, получающие эту информацию и реагирующие на нее соответствующим образом, вознаграждаются. Поэтому информацию можно назвать правдивой. Но передают ли животные когда-нибудь неверную информацию, случается ли им врать?

Заявление о том, что животное способно лгать, может быть неверно понято, так что я должен предупредить такую возможность. Однажды я присутствовал на лекции Беатрис и Аллена Гарднеров, посвященной их знаменитой “говорящей” шимпанзе Уошо (она пользуется американским языком знаков, и ее достижения потенциально представляют большой интерес для лингвистов). Среди публики было несколько философов, и в происходившем после лекции обсуждении их сильно волновал вопрос о том, способна ли Уошо говорить неправду. Подозреваю, что Гарднерам хотелось бы выбрать более интересные темы для обсуждения, и я с ними согласен. В данной книге я употребляю слова “обманывать” и “лгать” в гораздо более прямом смысле, чем те философы. Их интересовало осознанное намерение обмануть. Я же говорю просто об информации, вызывающей эффект, функционально равноценный обману. Если птица использует сигнал “Здесь поблизости ястреб”, когда на самом деле никакого ястреба нет, и спугивает таким образом своих собратьев, оставляющих ей на съедение весь корм, то можно сказать, что она им солгала. При этом мы не имеем в виду, что птица преднамеренно и сознательно хотела обмануть. Мы лишь подразумеваем, что лгунья получила корм за счет других птиц и что эти другие птицы улетели, отреагировав на ее крик так, как это следовало бы сделать, если бы поблизости находился ястреб.

Многие съедобные насекомые, подобно описанным в главе 3 бабочкам, создают себе защиту, подражая внешнему виду других неприятных на вкус или жалящих насекомых. Мы сами нередко принимаем за ос журчалок с их полосатой, желтой с черным, окраской. Еще более совершенной мимикрией “под пчел” обладают некоторые двукрылые. Хищники тоже часто лгут. Морской черт, или удильщик, терпеливо поджидает жертву, лежа на дне моря, где он сливается с субстратом. Единственная хорошо заметная часть его тела – извивающийся червеобразный кусочек ткани, сидящий на конце длинного “удилища”, которое отходит от верхней части головы. Если мимо проплывает потенциальная жертва – какая-нибудь мелкая рыбешка, – эта червеобразная приманка приходит в движение, завлекая жертву поближе ко рту удильщика. Внезапно он открывает рот, втягивает жертву внутрь и съедает ее. Удильщик лжет, используя стремление рыбешки приблизиться к движущемуся червеобразному объекту. Он говорит: “Вот червяк”, и всякая рыбка, “поверившая” лжи, быстро оказывается съеденной.

Некоторые машины выживания используют половые влечения других машин. Орхидея офрис пчелоносный побуждает пчел копулировать с ее цветками, которые очень похожи на пчелиных самок. Благодаря такому обману цветки орхидеи опыляются, так как если пчела посетит две орхидеи, то она при этом невольно перенесет пыльцу с одной на другую. Светляки (принадлежащие к отряду жуков) привлекают брачных партнеров световыми вспышками. У каждого вида есть свой особый рисунок последовательности коротких и более продолжительных вспышек, обеспечивающий узнавание особей своего вида и тем самым предотвращающий пагубную гибридизацию. Подобно тому, как моряки высматривают световые сигналы определенного типа, исходящие от нужного им маяка, так и светляки ищут закодированное в световых вспышках послание особей своего вида. Самки, принадлежащие к роду Photuris, “обнаружили”, что они могут заманивать самцов рода Photinus, имитируя световые сигналы, специфичные для Photinus. Заманив таким обманным путем самца Photinus, самка Photuris съедает его. На ум сразу приходят сирены и Лорелея, но корнуоллец предпочел бы вспомнить о пиратах прежних дней, которые зажигали фонари на скалах, приманивая к ним корабли, а когда корабли разбивались об эти скалы, забирали находившиеся в них грузы.

Развитие любой системы коммуникации всегда сопряжено с опасностью, что кто-то станет использовать ее в своих целях. Будучи воспитаны на представлении об эволюции как направленной на “благо вида”, мы, естественно, прежде всего думаем о лжецах и обманщиках как представителях разных видов: хищников, жертв, паразитов и тому подобном. Однако ложь и обман и использование коммуникации в собственных эгоистичных целях возможны во всех случаях, когда интересы генов разных индивидуумов расходятся. Это относится и к индивидуумам, принадлежащим к одному и тому же виду. Как мы увидим, следует даже ожидать, что дети будут обманывать своих родителей, мужья – жен, а братья – братьев.

Даже мнение о том, что сигналы, используемые животными для обмена информацией, первоначально возникли в процессе эволюции, поскольку они были взаимовыгодны, а затем стали использоваться недоброжелательно настроенными друг к другу сторонами, слишком упрощенно. Вполне возможно, что все коммуникации между животными с самого начала содержат в себе элемент обмана, ибо любые взаимодействия между животными всегда сопряжены со столкновением интересов. В следующей главе мы расскажем об одном весьма продуктивном подходе к изучению столкновений интересов с эволюционной точки зрения.

 

 

Глава 5. Агрессия: стабильность и эгоистичная машина

Эта глава посвящена главным образом агрессии – теме, связанной с недопониманием и недоразумениями. Мы по-прежнему будем рассматривать индивидуум как эгоистичную машину, запрограммированную на то, чтобы как можно лучше обеспечивать свои гены в целом. Такой подход принят для удобства. В конце главы мы вновь заговорим на языке отдельных генов.

Для любой машины выживания другая такая машина (если это не ее собственный детеныш или близкий родственник) составляет часть ее среды обитания, подобно скале, реке или чему-то съедобному. Это нечто, преграждающее путь, или нечто, что можно использовать. От скалы или реки она отличается лишь в одном: она склонна давать сдачи. Такое поведение объясняется тем, что эта другая машина также содержит свои бессмертные гены, которые она должна сохранить во имя будущего, и тем, что она также не остановится ни перед чем, чтобы сохранить их. Естественный отбор благоприятствует тем генам, которые управляют своими машинами выживания таким образом, чтобы те как можно лучше использовали свою среду. Сюда входит и наилучшее использование других машин выживания, относящихся как к собственному, так и к другим видам.

В некоторых случаях одни машины выживания, по-видимому, довольно мало посягают на жизнь других. Например, кроты и черные дрозды не поедают друг друга, не спариваются между собой и не конкурируют за жизненное пространство. Тем не менее нельзя считать, что они совершенно обособлены друг от друга. Они могут конкурировать за какой-нибудь ресурс, например за дождевых червей. Это не означает, что можно когда-нибудь увидеть схватку за червячка между кротом и дроздом. На самом деле может статься, что дрозду за всю его жизнь не доведется увидеть ни одного крота. Но если уничтожить всю популяцию кротов, это может сильнейшим образом повлиять на дроздов, хотя я не рискну высказывать предположения о деталях такого влияния или о том, какими извилистыми косвенными путями оно будет происходить.

Машины выживания разных видов воздействуют друг на друга разнообразными способами. Они могут выступать в роли хищников или жертв, паразитов и их хозяев, конкурентов за какой-нибудь ограниченный ресурс. Они могут использоваться специфическим образом, как, например, пчелы, служащие переносчиками пыльцы с цветка на цветок.

Машины выживания, относящиеся к одному и тому же виду, более непосредственно покушаются на жизнь друг друга. Причин этому много. Одна заключается в том, что половину популяции собственного вида данного индивидуума составляют потенциальные брачные партнеры или потенциальные усердно работающие и пригодные для эксплуатации родители его потомков, трудами которых можно воспользоваться. Другая причина состоит в том, что представители одного и того же вида, будучи очень сходными между собой и являясь машинами для сохранения генов, которые живут в одинаковых местообитаниях и ведут один и тот же образ жизни, прямо конкурируют за ресурсы. Крот может быть конкурентом для дрозда, но далеко не столь серьезным, как другой дрозд. Кроты могут конкурировать с дроздами за червей, но дрозды с дроздами конкурируют как за червей, так и за все остальное. Если они принадлежат к одному и тому же полу, то они могут конкурировать и за брачных партнеров. По причинам, которые мы рассмотрим в дальнейшем, конкуренция обычно происходит между самцами за самок. Это означает, что самец может обеспечить сохранение своих генов, если он нанесет какой-то ущерб другому самцу, с которым он конкурирует.

Логичный образ действия для машины выживания состоит, по-видимому, в том, чтобы убивать соперников, а затем (это лучше всего) съедать их. Хотя убийство и каннибализм встречаются в природе, они не столь обычны, как можно было бы ожидать, исходя из примитивной интерпретации теории эгоистичного гена. И в самом деле, в книге “Агрессия” Конрад Лоренц подчеркивает сдержанность и благородство, проявляемые животными в драках. Для Лоренца самая примечательная особенность схваток между животными состоит в том, что это формальные состязания, происходящие, подобно боксу или фехтованию, строго по правилам. Животные дерутся в перчатках и тупыми рапирами. Угрозы и блеф заменяют подлинную беспощадность. Если противник своим поведением признает поражение, победитель воздерживается от нанесения смертельного удара или укуса, вопреки тому, что могла бы предсказать наша примитивная теория.

Интерпретация агрессии животных как сдержанной и формальной может вызвать возражения. В частности, несправедливо, конечно, осуждать бедного старину Homo sapiens – как единственный вид, убивающий себе подобных, как единственного наследника каиновой печати! – и предъявлять ему такие мелодраматические обвинения. Что именно отмечает натуралист – сдержанность или неистовость животных, – зависит отчасти от того, за какими видами животных он наблюдает, а отчасти от его взглядов на эволюцию вообще – ведь Лоренц в конечном счете сторонник концепции “во благо вида”. Пусть представление о драках животных как о “джентльменских” поединках несколько преувеличено, но в нем есть по крайней мере немножко правды. На первый взгляд это выглядит как одна из форм альтруизма. Теория эгоистичного гена должна быть готова к нелегкой задаче дать этому объяснение. Почему животные при каждой представившейся возможности не вступают в бой, чтобы убивать соперников, принадлежащих к их собственному виду?

На это можно, вообще говоря, ответить, что откровенная драчливость дает не только какие-то преимущества. За нее приходится расплачиваться, причем плата не ограничивается такими очевидными расходами, как потеря времени и энергии. Допустим, например, что индивидуумы B и C – мои соперники и что я случайно встретил B. Мне как эгоистичному индивидууму могло бы показаться разумным убить его. Не будем, однако, спешить: С также мой соперник, но он одновременно и соперник B. Убив B, я тем самым окажу услугу C, убрав одного из его соперников. Может быть, лучше не убивать B, потому что он мог бы в таком случае вступить в конкуренцию или в драку с C, что косвенным образом оказалось бы благоприятным для меня. Мораль, вытекающая из этого простого гипотетического примера, сводится к тому, что пытаться убивать соперников без разбора не всегда целесообразно. В обширной и сложной системе соперничества удаление со сцены одного соперника необязательно окажется полезным: другие соперники могут выиграть от его гибели больше, чем тот, кто его убил. В этом убеждаются специалисты по борьбе с вредителями на собственном горьком опыте: выработав эффективный метод борьбы с серьезным вредителем какой-нибудь сельскохозяйственной культуры и радостно искоренив его, они обнаруживают, что другой вредитель выиграл от гибели уничтоженного вредителя гораздо больше, чем человек, и сельское хозяйство в конечном счете стало терять больше, чем прежде. Однако в других ситуациях убивать соперников или, по крайней мере, вступать с ними в драку представляется вполне разумным.

Если B – морской слон, имеющий большой гарем, а я – другой морской слон – могу, убив его, заполучить этот гарем, то мне безусловно следует попытаться сделать это. Но даже такая избирательная драчливость сопряжена с риском и потерями: B выгодно нанести ответный удар, чтобы защитить свою ценную собственность. Если я начинаю драку, у меня столько же шансов погибнуть, как и у него, а может быть, и больше. Он владеет ценным ресурсом, и именно поэтому я хочу вступить с ним в драку. Но почему он владеет этим ресурсом? Вероятно, он завоевал его в бою. Возможно, он сумел победить других претендентов, пытавшихся с ним драться до меня. По-видимому, он хороший борец. Даже если я выйду победителем и получу гарем, я, может быть, буду так покалечен, что не смогу воспользоваться плодами своей победы. Кроме того, драка требует затрат времени и энергии. Может быть, лучше их пока поберечь? Если я в течение некоторого времени постараюсь побольше есть и не ввязываться в драки, то подрасту и наберусь сил. В конце концов я буду драться с ним за гарем, но мои шансы на победу станут выше, если я подожду, чем если я ввяжусь в драку сейчас.

Произнося этот монолог, я пытался показать, что решению о том, вступать или не вступать в драку, в идеале должны предшествовать сложные, хотя и неосознанные расчеты “расход – приход”. Не все потенциальные выгоды можно получить, вступив в драку, хотя некоторый выигрыш она, несомненно, может принести. Точно так же в процессе драки каждое тактическое решение о том, наращивать ли усилия или понизить накал страстей, связано с потерями или выгодами, которые в принципе также поддаются анализу. Эта идея давно бродила в умах этологов, однако лишь Мейнарду Смиту, которого обычно не считают этологом, удалось выразить ее ясно и убедительно. Совместно с Джорджем Р. Прайсом и Джеффри А. Паркером он использует в своих исследованиях область математики, известную под названием теории игр. Их элегантные идеи можно описать с помощью слов, не прибегая к математическим символам, хотя при этом придется несколько поступиться строгостью.

Главная концепция, которую вводит Мейнард Смит, – это концепция эволюционно стабильной стратегии (ЭСС), ее идея, как он считает, была заложена работами Уильяма Д. Гамильтона и Роберта Х. Мак-Артура. “Стратегия” – это предварительно запрограммированная линия поведения. Вот пример стратегии: “Нападай на противника, если он спасается бегством – преследуй его; если он наносит ответный удар – убегай от него”. Важно понимать, что стратегия не рассматривается как нечто, сознательно разработанное индивидуумом. Помните, что мы говорим о животном как об автоматической машине выживания, снабженной компьютером, который контролирует действия мышц согласно заложенной в него программе. Сформулировать стратегию в виде набора простых инструкций, используя обычные слова, – это всего лишь удобный способ размышлять о ней. С помощью какого-то точно не установленного механизма животное ведет себя так, как если бы оно следовало этим инструкциям.

Эволюционно стабильная стратегия определяется как стратегия, которая, если она будет принята большинством членов данной популяции, не может быть превзойдена никакой альтернативной стратегией[22]. Это очень тонкая и важная идея. Ее можно выразить и по-иному, сказав, что наилучшая стратегия для данного индивидуума зависит от действий большинства членов популяции. Поскольку остальная популяция состоит из индивидуумов, каждый из которых стремится максимизировать собственный успех, единственной стратегией, способной сохраниться, будет та, которая, возникнув однажды в процессе эволюции, не может быть улучшена одним отклоняющимся индивидуумом. В случае какого-либо крупного изменения в окружающей среде может возникнуть короткий период эволюционной нестабильности и даже колебаний численности популяции. Но после того, как возникнет ЭСС, она будет сохраняться: отклонение от нее будет наказываться отбором.

Для того чтобы приложить эту идею к агрессии, рассмотрим один из простейших гипотетических случаев, приводимых Мейнардом Смитом. Допустим, что в некой популяции данного вида соперничающие индивидуумы используют только две стратегии, названные стратегией ястреба и стратегией голубя. (Эти названия использованы в том смысле, в каком их обычно применяют к людям, и совершенно не связаны с особенностями биологии соответствующих птиц: голуби на самом деле довольно агрессивные птицы.) Каждый индивидуум нашей гипотетической популяции получает звание Ястреба или Голубя. Ястребы всегда дерутся так неистово и безудержно, как только могут, отступая лишь при серьезных ранениях. Голуби же ограничиваются угрозами, с достоинством соблюдая все условности, и никогда не наносят противнику повреждений. Если Ястреб сражается с Голубем, то Голубь быстро убегает, оставаясь таким образом невредимым. Если Ястреб дерется с Ястребом, то драка продолжается до тех пор, пока один из соперников не получит серьезной раны или не будет убит. Если Голубь сталкивается с Голубем, ни один из них не страдает. Они долго выступают друг перед другом, принимая разные позы, пока один из них не устанет или не решит, что ему не стоит продолжать противостояние, а лучше отступить. Пока что мы исходим из допущения, что индивидуум не может заранее решить, с кем ему предстоит драться – с Ястребом или Голубем. Он обнаруживает это только в процессе драки и не может воспользоваться опытом прошлых драк с определенными индивидуумами, так как не помнит о них.

Произведем теперь чисто произвольную оценку результатов конфликта: пятьдесят очков за выигрыш, нуль – за проигрыш, минус сто за серьезную рану и минус десять – за потерю времени в длительном поединке. Можно считать, что эти очки непосредственно конвертируются в валюту, которой является выживание генов. Индивидуум, получивший высокие оценки, то есть имеющий в среднем большой выигрыш, это тот индивидуум, который оставляет после себя большое число своих генов в генофонде. Точные численные значения не имеют значения для нашего анализа, но помогают нам размышлять о проблеме.

Важно указать, что нас не интересует, побьют ли Ястребы Голубей, когда они дерутся. Ответ нам уже известен: Ястребы всегда побеждают. Мы хотим узнать, какая стратегия является стабильной – Ястребов или Голубей. Если одна из них представляет собой ЭСС, а другая – нет, то следует ожидать, что эволюционировать будет та, которая соответствует ЭСС. Теоретически возможно существование двух ЭСС. Это будет справедливо в том случае, если, независимо от того, какой стратегии – Ястреба или Голубя – следует большинство индивидуумов в популяции, наилучшей стратегией для каждой данной особи будет именно она. Тогда популяция будет стремиться к сохранению того из своих двух стабильных состояний, которого она достигла раньше. Однако, как мы сейчас увидим, ни одна из этих двух стратегий – Ястреба или Голубя – не будет в действительности сама по себе эволюционно стабильной, и поэтому не следует ожидать, что та или другая будет эволюционировать. Для того чтобы показать это, нам следует вычислить средние выигрыши.

Предположим, что рассматриваемая популяция целиком состоит из одних Голубей. В их драках пострадавших не бывает. Состязания представляют собой длительные ритуальные турниры, что-то вроде игры в “гляделки”, которые заканчиваются только тогда, когда один из противников отступает. Победитель получает пятьдесят очков – цена ресурса, из-за которого возникла драка, но платит штраф, равный десяти очкам, за потерю времени на длительный турнир, так что его выигрыш в конечном счете равен сорока очкам. Побежденный также платит штраф (десять очков) за потерянное время. В среднем следует ожидать, что каждый Голубь победит в половине турниров, а в половине проиграет. Поэтому его средний выигрыш за турнир равен среднему между сорока и минус десятью очками, то есть пятнадцати. Таким образом, каждый Голубь в популяции, очевидно, существует вполне благополучно.

Допустим, однако, что в популяции в результате мутации появился Ястреб. Поскольку этот Ястреб – единственный в округе, во всех его драках в роли противника может выступать только Голубь. Ястребы всегда побеждают Голубей, так что он получает пятьдесят очков за каждую драку и его средний выигрыш равен пятидесяти. Он обладает огромным преимуществом над Голубями с их чистым выигрышем (пятнадцать очков). В результате гены Ястреба быстро распространяются в популяции. Но теперь уже Ястреб не может рассчитывать на то, что каждым его противником будет Голубь. В экстремальном случае – если ястребиные гены распространяются так успешно, что вся популяция оказывается состоящей из Ястребов, – все драки теперь будут происходить между Ястребами. Положение вещей резко изменилось. При драке Ястреба с Ястребом один из них получает тяжкие повреждения, оцениваемые как минус сто очков, тогда как выигрыш победителя составляет пятьдесят очков. Каждый Ястреб в популяции Ястребов может выиграть половину сражений и половину проиграть. Поэтому его ожидаемая средняя оценка за одну драку равна среднему между пятьюдесятью и минус ста очкам, то есть двадцати пяти очкам. Рассмотрим теперь случай, когда в популяции Ястребов появился один Голубь. Конечно, он оказывается побежденным во всех драках, но при этом остается невредимым. Его средний выигрыш в популяции Ястребов равен нулю, тогда как средний выигрыш Ястреба в популяции Ястребов равен минус двадцати пяти. Поэтому голубиные гены будут иметь тенденцию распространиться в популяции.

Создается впечатление, что в популяции непрерывно происходят колебания. Ястребиные гены достигают превосходства. Затем, вследствие преобладания в популяции Ястребов, преимущество получают голубиные гены, численность которых возрастает до тех пор, пока ястребиные гены снова не начнут процветать, и так далее. Однако в таких колебаниях нет нужды. Между Ястребами и Голубями существует стабильное соотношение. Для используемой нами произвольной системы очков стабильное соотношение между Голубями и Ястребами составляет 5/12:7/12. При достижении такого стабильного соотношения средний выигрыш для Ястребов точно равен среднему выигрышу для Голубей. Поэтому отбор не оказывает предпочтения ни тем, ни другим. Если число Ястребов в популяции начнет возрастать, так что их доля станет выше 7/12, у Голубей начнет возникать дополнительное преимущество, и соотношение вернется к стабильному состоянию. Подобно тому, как стабильное соотношение полов равно 50:50, так и стабильное соотношение Ястребов и Голубей в данном гипотетическом примере равно 7:5. В обоих случаях колебания вблизи стабильной точки, если они имеются, не будут слишком сильными.

На первый взгляд все это немножко смахивает на групповой отбор, но на самом деле не имеет с ним ничего общего. Мысль о групповом отборе возникает потому, что позволяет представить себе существование некоего состояния стабильного равновесия, к которому популяция стремится вернуться в случае его нарушения. Однако ЭСС – гораздо более сложная концепция, чем групповой отбор. Она никак не связана с тем, что некоторые группы могут быть удачливее других. Это можно проиллюстрировать, используя систему произвольных очков в приведенном гипотетическом примере. Средний выигрыш для любого индивидуума – будь то Ястреб или Голубь – в стабильной популяции, состоящей на 7/12 из Ястребов и на 5/12 из Голубей, равен 6 1/4. Но 6 1/4 гораздо меньше среднего выигрыша для Голубя в популяции из одних Голубей (15). Если бы только все согласились быть Голубями, это пошло бы на пользу каждому индивидууму. Путем простого группового отбора любая группа, все члены которой с общего согласия примут стратегию Голубя, достигнет гораздо большего успеха, чем соперничающая с ней группа, придерживающаяся соотношения, обеспечивающего ЭСС. (На самом деле сговор не прибегать ни к чему другому, кроме стратегии Голубя, не обеспечивает группе максимально возможный успех. Если группа состоит на 1/6 из Ястребов и на 5/6 из Голубей, то средний выигрыш на одну драку будет равен 16 2/3. Это наиболее выгодное соотношение, но в данном случае мы его касаться не будем. Более простой вариант – одни лишь Голуби, – обеспечивающий каждому индивидууму средний выигрыш – пятнадцать очков, гораздо выгоднее каждому отдельному индивидууму, чем ЭСС.) Поэтому теория группового отбора предскажет тенденцию к сговору, по которому все должны придерживаться стратегии Голубя, поскольку группа, состоящая на 7/12 из Ястребов, достигает меньшего успеха. Беда, однако, в том, что все сговоры, даже те, которые в конечном счете выгодны всем, не защищены от злоупотреблений. Что из того, если каждому лучше состоять в группе из одних Голубей, чем в группе ЭСС? Но, к сожалению, оказаться в такой группе единственным Ястребом настолько хорошо, что эволюцию Ястребов не остановить ничем. Сговор, таким образом, будет нарушен в результате измены в собственном стане. ЭСС стабильна не потому, что она так уж хороша для участвующих в ней индивидуумов, а просто потому, что она гарантирует от измены в своих рядах.

Люди могут заключать пакты и вступать в заговоры, сулящие выгоду всем участникам, даже если эти пакты нестабильны в смысле ЭСС. Это возможно, однако, лишь потому, что каждый индивидуум ориентируется на свое осознанное предвидение и способен понять, что выполнение условий пакта отвечает его собственным долговременным интересам. Даже при заключении соглашений между людьми постоянно существует опасность, что сиюминутная выгода от их нарушений может быть очень велика и соблазн окажется всепоглощающим. Быть может, наилучшим примером служит установление твердых цен. Установление стандартных искусственно завышенных цен на бензин соответствует долгосрочным интересам владельцев индивидуальных автозаправочных станций. Объединения торговцев, проводящих акцию, в основе которой лежит осознанная оценка долговременных интересов, могут сохраняться на протяжении достаточно длительных периодов времени. Слишком часто, однако, кто-то уступает соблазну быстро разбогатеть, снизив у себя цену. Его соседи немедленно делают то же самое, и волна снижения цены распространяется по стране. К сожалению для остальных граждан, осознанное предвидение владельцев автозаправочных станций затем вновь утверждается и они заключают новое соглашение о твердых ценах. Таким образом, даже у человека – вида, способного к осознанному предвидению, – соглашения, основанные на обеспечении наилучших долгосрочных интересов, постоянно находятся на краю гибели вследствие измены в собственном стане. Еще труднее понять возможные способы развития стратегий, обеспечивающих благоденствие группы или согласованные действия у диких животных, поведение которых контролируется конкурирующими генами. Следует ожидать, что эволюционно стабильная стратегия распространена повсеместно.

В нашем гипотетическом примере мы исходили из допущения, что каждый индивидуум может быть либо Ястребом, либо Голубем, и получили эволюционно стабильное соотношение Ястребов и Голубей. На практике это означает, что в генофонде достигается стабильное соотношение ястребиных и голубиных генов. На языке генетики такое состояние называют стабильным полиморфизмом. В той мере, в какой это касается состязаний, в точности такой же ЭСС можно достигнуть без полиморфизма при следующих условиях. Если каждый индивидуум способен вести себя в каждом состязании либо как Ястреб, либо как Голубь, то может быть достигнута ЭСС, при которой все особи с равной вероятностью могут вести себя как Ястребы, в данном случае – с вероятностью 7/12. На практике это должно означать, что каждый индивидуум вступает в каждое состязание, заранее приняв случайным образом решение, выступать ли ему в данном состязании в роли Ястреба или в роли Голубя. Решение принято случайно, но с вероятностью 7/12 в пользу Ястреба. Очень важно, чтобы эти решения, несмотря на некоторую предпочтительность стратегии Ястреба, были случайными в том смысле, что у противника нет возможности угадать, как его оппонент собирается вести себя в каждом конкретном состязании. Так, например, неразумно выступать в роли Ястреба семь раз подряд, а затем пять раз подряд в роли Голубя, и так далее. Если какой-нибудь индивидуум примет такую простую последовательность, его противники быстро разгадают его намерения и воспользуются этим. Чтобы победить противника, избравшего стратегию простой последовательности, достаточно разыгрывать Ястреба только в тех случаях, когда точно известно, что он будет выступать в роли Голубя.

Пример Ястреба и Голубя, конечно, прост до наивности. Это лишь “модель”, и на самом деле в природе ничего такого не происходит, но модель помогает понять действительные события. Модели могут быть простыми, как эта, и тем не менее окажутся полезными для понимания какого-то факта или будут стимулировать появление новой идеи. Простые модели можно совершенствовать и постепенно усложнять. Если все идет хорошо, то по мере усложнения моделей их сходство с реальным миром возрастает. Один из путей дальнейшей разработки модели Ястреба и Голубя состоит в том, чтобы ввести в нее еще несколько стратегий. Ястреб и Голубь – не единственные возможности. Мейнард Смит и Прайс ввели более сложную стратегию, получившую название “Отпорщик” (Retaliator).

Отпорщик в начале каждого сражения действует как Голубь: не предпринимает решительной яростной атаки, усиливая натиск, как это свойственно Ястребу, а ограничивается условными угрожающими действиями. Но если противник нападает на него, он платит тем же. Иными словами, если на Отпорщика нападает Ястреб, то он ведет себя как Ястреб, а при встрече с Голубем – как Голубь. Когда он встречается с другим Отпорщиком, он ведет себя как Голубь. Отпорщик – это условный стратег. Его поведение зависит от поведения противника.

Другой условный стратег получил название “Задира” (Bully). Задира ходит вокруг, выступая в роли Ястреба, пока кто-нибудь не даст ему сдачи. Тогда он немедленно удирает. Есть еще один условный стратег: “Испытатель-отпорщик” (Prober-retaliator). Он в принципе сходен с Отпорщиком, но иногда в порядке эксперимента предпринимает попытку наращивания конфликта. Если противник не оказывает сопротивления, Отпорщик продолжает вести себя как Ястреб. Получив отпор, он переходит на традиционные угрозы, характерные для Голубя. Если на него нападают, он реагирует как обычный Отпорщик.

Если все пять описанных стратегий “натравить” друг на друга в компьютерной модели, то оказывается, что лишь одна из них – стратегия Отпорщика – стабильна в эволюционном смысле[23]. Стратегия Испытателя-отпорщика почти стабильна, стратегия Голубя нестабильна, потому что популяцию, состоящую из Голубей, наводнили бы Ястребы и Задиры. Стратегия Ястреба нестабильна, потому что популяцию, состоящую из Ястребов, наводнили бы Голуби и Задиры. Стратегия Задиры нестабильна, потому что популяцию Задир наводнили бы Ястребы. Популяцию Отпорщиков не смогут наводнить приверженцы ни одной из других стратегий, так как ни одна другая стратегия не может быть эффективнее самой стратегии Отпорщика. Однако Голубь действует столь же эффективно в популяции Отпорщиков. Это означает, что при прочих равных условиях число Голубей могло бы медленно возрастать. Но если численность Голубей достигает сколько-нибудь значительного уровня, Испытатели-отпорщики (и, между прочим, Ястребы и Задиры) начинают приобретать преимущество, поскольку они лучше справляются с Голубями, чем Отпорщики. Сама стратегия Испытателя-отпорщика, в отличие от Ястреба и Задиры, почти соответствует ЭСС в том смысле, что в популяции, состоящей из особей, использующих эту стратегию, только одна стратегия – стратегия Отпорщика – оказывается более эффективной, притом незначительно. Можно ожидать поэтому преобладания популяций, которые состоят из смеси особей, использующих стратегии Отпорщиков и Испытателей-отпорщиков (возможно, даже с небольшими колебаниями в соотношении между ними), и небольшого числа Голубей, доля которых также колеблется. Следует снова подчеркнуть, что речь идет отнюдь не о полиморфизме, при котором каждый индивидуум всегда использует какую-то одну стратегию. Поведение индивидуума может представлять собой сложную смесь стратегий Отпорщика, Испытателя-отпорщика и Голубя.

Это теоретическое заключение довольно близко к тому, что происходит на самом деле в популяциях большинства диких животных. Мы в некотором смысле объяснили “рыцарский” аспект агрессивности животных. Конечно, в каждом случае детали поведения зависят от точного числа очков, которым оценивается победа, получение травмы, потеря времени и тому подобное. У морских слонов наградой за победу могут быть почти монопольные права на большой гарем. Поэтому выигранное сражение может оцениваться очень высоко. Неудивительно, что драки между этими животными бывают жестокими и вероятность получения серьезных травм также высока. Цену потерянного времени, вероятно, следует считать незначительной по сравнению с ценой травмы или выгоды, которую дает победа. Вместе с тем для мелких птиц, обитающих в холодном климате, наиважнейшее значение может иметь цена потери времени. Большая синица, вскармливающая птенцов, должна ловить в среднем по одному насекомому каждые тридцать секунд. Ей дорога каждая секунда дневного времени. Даже относительно короткое время, затраченное впустую на стычку типа Ястреб-Ястреб, по-видимому, следует рассматривать как более серьезную потерю для такой птицы, чем риск получения травмы. К сожалению, наши знания пока слишком ограниченны для того, чтобы давать реалистические оценки потерь и выигрышей при различных исходах подлинных событий, происходящих в природе[24]. Мы должны соблюдать осторожность и не делать выводов, которые были бы просто результатом наших собственных произвольных оценок. Общие выводы, имеющие существенное значение, состоят в том, что ЭСС способна эволюционировать, что она неравнозначна оптимуму, которого можно было бы достигнуть в результате группового сговора, и что здравый смысл может ввести в заблуждение.

Другая военная игра, рассмотренная Мейнардом Смитом, – “война на истощение”. Подобное возможно у такого вида, который никогда не ввязывается в опасные сражения. Это может быть вид, защищенный достаточно прочной броней, так что его представителям вряд ли грозят серьезные повреждения. Все конфликты между членами такого вида разрешаются путем чисто условных демонстраций, которые всегда заканчиваются бегством одного из противников. Для того чтобы победить, достаточно стоять на месте и с вызовом глядеть на противника, пока он не бросится наутек. Совершенно очевидно, что ни одно животное не может себе позволить бесконечно заниматься угрозами. У него множество других важных дел. Какую бы ценность ни представлял для него ресурс, из-за которого произошел конфликт, эта ценность небезгранична. На то, чтобы завладеть этим ресурсом, имеет смысл затратить лишь какое-то определенное количество времени, и, как на любом аукционе, каждый индивидуум устанавливает для себя предел, за который он не перейдет. На нашем аукционе, в котором участвуют лишь двое покупщиков, валютой служит время.

Допустим, все такие индивидуумы заранее решили, сколько именно времени “стоит” некий ресурс, например самка. В таком случае мутантный индивидуум, готовый затратить чуть больше времени, всегда окажется победителем. Следовательно, стратегия, ограничивающая длительность аукционных торгов, нестабильна. Даже если цена данного ресурса определена очень точно и все индивидуумы предлагают именно эту цену, стратегия остается нестабильной. Любые два индивидуума, предлагающие цену в соответствии с этой максимальной стратегией, прекратят торг точно в один и тот же момент, и ни один из них не получит желанный ресурс! В таком случае каждому индивидууму было бы выгодно отступить с самого начала и вовсе не тратить времени ни на какие соревнования. Важное различие между войной на истощение и настоящим аукционом состоит в том, что при такой войне платят оба противника, но лишь один из них получает товар. Поэтому в популяции покупщиков, предлагающих максимальную цену, стратегия отказа от торгов с самого начала обеспечит успех и распространится в популяции. Вследствие этого индивидуумы, отказавшиеся продолжать игру не сразу, а спустя несколько секунд, начнут извлекать из этого некоторую выгоду. Такая стратегия будет вознаграждаться в случае применения ее против индивидуумов, прекращающих игру немедленно, которые теперь преобладают в популяции. Отбор будет, следовательно, благоприятствовать постепенному отодвиганию момента отказа, до тех пор, пока он снова не приблизится к максимуму, допускаемому настоящей потребительской ценой данного ресурса.

Еще раз, с помощью одних лишь рассуждений, мы убедили себя представить картину неких колебаний в популяции. И снова математический анализ показывает, что эта картина неверна. Эволюционно стабильная стратегия, которую можно описать математически, существует, но в словесном выражении она сводится к тому, что каждый индивидуум готов продолжать соответствующие действия в течение непредсказуемого времени. Время это непредсказуемо в каждом отдельном случае, но в среднем оно отражает истинную цену ресурса. Допустим, например, что ресурс заслуживает продолжения демонстраций в течение пяти минут. При ЭСС каждый отдельный индивидуум может продолжать их больше пяти минут, меньше этого срока или даже ровно пять минут. Важно, что его противник лишен возможности узнать, сколь долго тот готов демонстрировать в конкретном случае.

Совершенно очевидно, что в войне на истощение жизненно важно, чтобы противники ничем не выдали своего намерения выйти из игры. Всякий, кто хотя бы малейшим подрагиванием усов выкажет, что он начинает подумывать о том, чтобы сдаться, мгновенно окажется в невыгодном положении. Если бы, скажем, подрагивание усов было надежным признаком того, что через минуту последует отступление, то можно было бы воспользоваться очень простой стратегией: “Заметив подрагивание усов противника, подождите минутку, прежде чем сдаться, независимо от того, какими были ваши намерения прежде. Если же усы вашего противника неподвижны, а до того момента, когда вы все равно собирались сдаваться, осталась одна минута, сдавайтесь немедленно и не теряйте больше времени. Никогда не шевелите усами”. Так естественный отбор быстро покарал бы за подрагивание усов и за любое аналогичное действие, которое могло бы выдать, как вы намереваетесь вести себя в будущем. В процессе эволюции выработалось бы бесстрастное выражение лица.

Почему же бесстрастное лицо, а не отъявленная ложь? Еще раз: потому что вранье нестабильно. Допустим, случилось так, что большинство индивидуумов приходило бы в ярость только тогда, когда они действительно собираются вести длительную войну на истощение. Ответная уловка совершенно очевидна: как только у животного шерсть встала дыбом, его противник тут же отступает. Но дальнейшая эволюция может привести к появлению обманщиков: индивидуумы, которые вовсе не расположены к длительной борьбе, при каждом удобном случае ощетиниваются и пожинают плоды легкой и быстрой победы. Так начинают распространяться гены вранья. Когда обманщики оказываются в большинстве, отбор начинает благоприятствовать индивидуумам, которых они “брали на пушку”. Поэтому число обманщиков снова уменьшается. В войне на истощение обман пригоден в качестве эволюционно стабильной стратегии не более, чем правда. Эволюционно стабильна бесстрастность. Капитуляция, когда она, наконец, произойдет, будет внезапной и непредсказуемой.

До сих пор мы рассматривали только то, что Мейнард Смит называет “симметричными” соревнованиями. Это означает, что мы допускаем полную идентичность соперников во всех отношениях, за исключением используемой ими стратегии борьбы. Иными словами, предполагается, что Ястребы и Голуби равны по силе, обладают одинаковым оружием и броней и что их выигрыш в случае победы одинаков. Такое допущение удобно для построения модели, но оно не очень реалистично. Далее Паркер и Мейнард Смит занялись асимметричными соревнованиями. Предположим, например, что индивидуумы различаются по размерам и по бойцовским качествам и что каждый индивидуум способен оценить параметры противника по сравнению со своими собственными. Оказывает ли это влияние на складывающуюся ЭСС? Безусловно оказывает.

Существует, очевидно, три главных вида симметрии. О первом мы только что говорили: индивидуумы могут различаться по своим размерам и бойцовским качествам. Второй состоит в том, что индивидуумы могут различаться по величине той выгоды, которую им принесет победа. Например, старый самец, которому в любом случае осталось недолго жить, получив рану, потеряет, вероятно, меньше, чем молодой, который в течение долгого времени еще способен к размножению. Третий тип симметрии представляет собой странное следствие, вытекающее из теории о том, что чисто произвольная, казалось бы, совершенно не относящаяся к делу, асимметрия способна дать начало некоей ЭСС, поскольку ее можно использовать для быстрого улаживания конфликтов. Такая асимметрия возникает, например, обычно в тех случаях, когда один из противников появляется на месте состязания раньше другого. Назовем первого Резидентом, а второго – Захватчиком. Допустим, что положение Резидента или Захватчика не дает никаких преимуществ. Как мы увидим, существуют практические причины, по которым эти допущения могут оказаться неверными, но не в этом дело. Главное в том, что, если даже из общих соображений нет оснований говорить о наличии у Резидентов преимущества над Захватчиками, существует вероятность возникновения ЭСС, зависящей от асимметрии. Простая аналогия: быстрое и безболезненное разрешение споров между людьми с помощью монетки.

Эволюционно стабильной могла бы стать следующая условная стратегия: “Если ты Резидент – нападай, если Захватчик – отступай”. Поскольку мы допустили, что рассматриваемая асимметрия произвольна, то противоположная стратегия (“если ты Резидент – отступай, если Захватчик – нападай”) также может быть стабильной. Какая из этих двух ЭСС будет принята данной популяцией, зависит от того, которая из них раньше завоюет большинство в популяции. Как только большая часть членов популяции примет одну из этих двух стратегий, те, кто ее отвергнет, будут наказаны. Следовательно, она по определению представляет собой ЭСС.

Предположим, например, что все особи придерживаются стратегии: “Резидент побеждает, Захватчик отступает”. Это означает, что половину своих битв они выигрывают, а половину проигрывают. Они никогда не бывают ранены и никогда не тратят время попусту, так как все споры немедленно разрешаются в соответствии с принятым соглашением. Допустим теперь, что появился мутантный возмутитель спокойствия. Предположим, что он применяет стратегию Ястреба в чистом виде, то есть всегда нападает и никогда не отступает. Он будет побеждать в тех случаях, когда его противник ведет себя как Захватчик. Если же противником окажется Резидент, то он серьезно рискует получить травмы. В среднем его выигрыш будет ниже, чем у индивидуумов, придерживающихся произвольных правил ЭСС. Возмутителю спокойствия, пытающемуся нарушить конвенцию: “Если Резидент – беги, если Захватчик – нападай”, приходится еще горше. Он не только чаще бывает ранен, но и реже выходит победителем. Допустим, однако, что по какому-то случайному стечению обстоятельств индивидуумы, придерживающиеся этой противоположной стратегии, сумели стать большинством. В таком случае их стратегия превратилась бы в стабильную норму и каралось бы уже отступление от нее. Вполне возможно, что, наблюдая за определенной популяцией на протяжении многих поколений, мы обнаружили бы ряд возникающих время от времени сдвигов от одного стабильного состояния к другому.

В жизни, однако, действительно произвольные асимметрии вряд ли существуют. Например, Резиденты, возможно, в самом деле обладают практическим преимуществом над захватчиками. Им лучше известны местные условия. Захватчик, вероятно, раньше выбьется из сил, поскольку ему еще надо было добраться до поля битвы, тогда как Резидент находился там изначально. Есть и более абстрактная причина, по которой из двух стабильных состояний – “Резидент побеждает. Захватчик отступает” – в природных условиях одно более вероятно. Причина эта в том, что противоположная стратегия – “Захватчик побеждает. Резидент отступает” – несет в себе тенденцию к саморазрушению. Мейнард Смит назвал бы такую стратегию парадоксальной. В любой популяции, стойко придерживающейся этой парадоксальной ЭСС, индивидуумы всегда будут стремиться никогда не оказаться в роли Резидентов: они при каждой встрече будут стараться выступать в роли Захватчиков. Достигнуть этого они могут лишь с помощью безостановочного, и в остальном бессмысленного, перемещения! Не говоря уж о связанных с этим затратах времени и энергии, такое направление само по себе должно привести к исчезновению категории “Резидент”. В популяции, стойко придерживающейся другого стабильного состояния – “Резидент побеждает. Захватчик отступает”, – естественный отбор будет благоприятствовать выживанию индивидуумов, стремящихся быть Резидентами. Для каждого индивидуума это означает держаться за определенный участок земли, покидая его как можно реже и создавая видимость, что он его “защищает”. Как хорошо известно, подобное поведение обычно наблюдается в природе и получило название “защита территории”.

Наилучшую из всех известных мне демонстраций этой формы асимметрии в поведении предложил великий этолог Николас Тинберген, который провел эксперимент, отличающийся характерными для него изобретательностью и простотой[25]. В одном из его аквариумов жили два самца колюшки. Эти самцы построили себе по гнезду на противоположных концах аквариума, и каждый из них “защищал” территорию вокруг собственного гнезда. Тинберген поместил каждого из самцов в отдельную стеклянную банку и, сблизив банки, наблюдал, как самцы пытаются вступить в драку через стекло. Тут-то и обнаружилось самое интересное: когда Тинберген приближал обе банки к той стенке аквариума, где находилось гнездо самца A, последний становился в позу нападения, а самец B пытался отступить. Если же он приближал банки к территории B, самцы менялись ролями. Таким образом, просто перенося банки от одного конца аквариума к другому, Тинберген мог диктовать, какому из самцов нападать, а какому – отступать. Оба самца, очевидно, действовали в соответствии с простой условной стратегией: “Если ты Резидент – нападай, если Захватчик – отступай”.

Биологи нередко задают вопрос: в чем состоят биологические “преимущества” территориального поведения? Высказывались многочисленные предположения, и о некоторых из них будет сказано позднее. Но теперь мы начинаем понимать, что сам вопрос, возможно, излишен. “Защита” территории – это, быть может, просто некая ЭСС, возникающая вследствие асимметрии во времени прибытия, которое обычно определяет характер взаимоотношений между двумя индивидуумами и данным участком земли.

Вероятно, самый важный вид непроизвольной асимметрии относится к общим размерам индивидуума и его бойцовским способностям. Крупные размеры – одно из качеств, необходимых для победы в сражениях, но оно необязательно всегда самое важное. Если из двух соперников всегда побеждает более крупный и если каждый из них точно знает, крупнее он или мельче соперника, то возможна лишь одна разумная стратегия: “Если твой соперник крупнее тебя – убегай, вступай в борьбу лишь с теми соперниками, которые мельче тебя”. Положение несколько сложнее, если значение размеров менее определенно. Если крупные размеры дают лишь небольшое преимущество, указанная выше стратегия все еще стабильна. Если, однако, имеется серьезный риск получить увечье, возможна также “парадоксальная” стратегия: “Вступай в борьбу с соперниками, которые крупнее тебя, и убегай от тех, которые мельче тебя”. Совершенно ясно, почему такая стратегия называется парадоксальной – она полностью противоречит здравому смыслу. Стабильной она может оказаться по следующей причине. В популяции, целиком состоящей из приверженцев парадоксальной стратегии, никогда не бывает пострадавших. Это объясняется тем, что в каждом состязании один из противников (более крупный) всегда убегает. Мутант средних размеров, придерживающийся “разумной” стратегии, то есть выбирающий себе более мелких противников, в половине случаев оказывается втянутым в острую борьбу. Это объясняется тем, что встречая индивидуума, имеющего меньшие размеры, он нападает на него. В свою очередь этот мелкий индивидуум яростно дает сдачи, потому что избрал парадоксальную стратегию. Хотя “разумный” стратег имеет больше шансов победить, чем “парадоксальный”, он все же довольно сильно рискует оказаться побежденным или получить серьезные повреждения. Поскольку большинство членов популяции придерживается парадоксальной стратегии, “разумный” стратег имеет больше шансов оказаться пострадавшим, чем любой “парадоксальный” стратег.

 

Несмотря на то, что парадоксальная стратегия может быть стабильной, она, вероятно, представляет только академический интерес. Средний выигрыш ее приверженцев будет выше лишь в том случае, если их число значительно превосходит число “разумных” стратегов. Трудно представить себе, как она могла бы вообще возникнуть. Даже если бы она и возникла, соотношению в популяции “разумных” и “парадоксальных” индивидуумов достаточно было бы чуть сдвинуться в “разумную” сторону, чтобы достичь “зоны притяжения” другой ЭСС – разумной стратегии. Зона притяжения – это тот набор соотношений в популяции, при котором (в данном случае) разумная стратегия дает преимущество: как только популяция достигнет этой зоны, она неизбежно будет приближаться к разумной стабильной точке. Было бы очень здорово обнаружить пример парадоксальной ЭСС в природе, но я сомневаюсь, что на это есть хоть какая-то надежда. (Я поторопился. После того как были написаны эти строки, профессор Мейнард Смит обратил мое внимание на следующее описание поведения мексиканского паука Oecobius civitas, данное Дж. Берджессом: “Если паука потревожили и выгнали из его убежища, он мчится по скале и, если не может найти свободную щель, чтобы спрятаться, ищет приюта в норке другого паука того же вида. Если другой паук при этом находится в своем логовище, то вместо того чтобы напасть на пришельца, он выбегает наружу и в свою очередь начинает искать себе новое убежище. Таким образом, достаточно потревожить одного паука, чтобы вызвать процесс последовательного перемещения из паутины в паутину, который может продолжаться в течение нескольких секунд, часто вызывая переселение большинства пауков данного сообщества из собственного убежища в чужие” (Burgess, J. W. 1976. Social spiders // Scientific American, 234 (3), 101–106). Это соответствует парадоксальной стратегии, описанной в этой главе[26].)

А не может ли статься, что индивидуумы способны сохранять некоторые воспоминания об исходе прошлых боев? Это зависит от того, какой памятью они обладают: специфической или общей. Сверчки сохраняют в памяти общие представления о событиях, происходивших в прошлых стычках. Сверчок, который недавно вышел победителем из многих боев, приобретает черты Ястреба. Сверчок, который недавно многократно проигрывал, напротив, больше склонен к стратегии Голубя. Это очень четко показал Ричард Д. Александер. С помощью моделей сверчков он одерживал победы над настоящими сверчками. После таких испытаний настоящие сверчки чаще проигрывали битвы с другими настоящими сверчками. Можно рассматривать каждого сверчка как индивидуум, непрерывно пересматривающий собственную оценку своих бойцовских качеств относительно аналогичных качеств среднего члена данной популяции. Если группу таких животных, как сверчки, действующих с учетом воспоминаний о прошлых битвах, содержать в течение некоторого времени вместе, не допуская к ним посторонних индивидуумов, то можно ожидать, что в ней возникнет своего рода иерархическая структура[27]. Наблюдая за такой группой, можно определить место, занимаемое каждым ее членом в этой структуре. Индивидуумы более низкого ранга обычно отступают перед индивидуумами более высокого ранга. Нет нужды предполагать, что индивидуумы узнают друг друга. На самом деле происходит всего лишь следующее: вероятность победы индивидуумов, привыкших побеждать, еще больше возрастает, тогда как индивидуумы, привыкшие к поражениям, будут проигрывать все чаще. Даже если вначале все индивидуумы выигрывают и проигрывают по закону случая, среди них все равно устанавливается иерархическая структура. Кстати, это приводит к тому, что число серьезных драк постепенно идет на убыль.

Я должен использовать выражение “своего рода иерархическая структура”, потому что многие считают необходимым ограничить применение термина “иерархическая структура” теми случаями, которые связаны с узнаванием конкретных индивидуумов. В таких случаях память о прошлых сражениях носит специфический, а не общий характер. Сверчки не способны воспринимать друг друга как индивидуумов, но куры и обезьяны способны на это. Предположим, я – обезьяна. Тогда именно та обезьяна, которая побила меня когда-то в прошлом, вероятно, побьет меня и в будущем. Наилучшая стратегия для индивидуума состоит в том, чтобы вести себя по отношению к другому индивидууму, победившему его в прошлом, в соответствии со стратегией Голубя. Если нескольких кур, которые прежде никогда не встречались друг с другом, собрать вместе, между ними обычно возникают драки. Спустя некоторое время драки затихают, однако по совсем другой причине, чем драки сверчков. У кур это происходит потому, что каждая из них “узнает свое место” по отношению ко всем остальным. Между прочим, от этого выигрывает группа в целом. Об этом свидетельствует то обстоятельство, что в сложившихся группах кур, в которых отчаянные драки редки, яйценоскость выше, чем в группах, состав которых все время изменяют и в которых драки поэтому возникают чаще. Биологи часто говорят о биологическом преимуществе, или “функции”, установления иерархической структуры как способе снижения явной агрессивности в группе. Такая постановка вопроса, однако, неверна. Иерархической структуре как таковой нельзя приписывать какую-либо “функцию” в эволюционном смысле, поскольку это свойство группы, а не индивидуума. Можно говорить, что типы индивидуального поведения, проявляющиеся в форме иерархической структуры, если рассматривать их на групповом уровне, обладают некими функциями. Лучше было бы, однако, вовсе отказаться от слова “функция” и представлять ситуацию в плане эволюционно стабильных стратегий в асимметричных состязаниях при наличии способности к узнаванию конкретных индивидуумов и памяти.

Мы рассматривали состязания между членами одного и того же вида. А как обстоит дело с состязаниями между представителями разных видов? Как уже говорилось выше, представители разных видов не конкурируют между собой столь непосредственным образом, как члены одного и того же вида. Поэтому следует ожидать, что между ними реже возникают конфликты из-за ресурсов. Наши ожидания подтверждаются: например, дрозды защищают свою территорию от других дроздов, но не от больших синиц. Если составить карту территорий, занимаемых отдельными дроздами в данном лесу, и наложить на нее карту территорий отдельных больших синиц, можно убедиться, что территории этих двух видов перекрываются совершенно беспорядочным образом. Они живут как бы на разных планетах.

Однако острые столкновения интересов представителей разных видов могут возникать по другим поводам. Например, льву хочется съесть тело антилопы, но у антилопы имеются совершенно другие планы относительно своего тела. Такую ситуацию обычно не считают конкуренцией за некий ресурс, но с точки зрения логики с этим трудно согласиться. В роли ресурса в данном случае выступает мясо. Гены льва “хотят” заполучить это мясо в качестве пищи для своей машины выживания. А гены антилопы хотят сохранить мясо в качестве функционирующих мышц и органов для собственной машины выживания. Эти два способа использования данного мяса несовместимы, что и приводит к конфликту интересов.

Другие представители вида, к которому относится данный индивидуум, также состоят из мяса. Но почему каннибализм относительно редок? Как отмечалось в главе 1, взрослые особи обыкновенной чайки иногда поедают птенцов своего вида. Тем не менее никто никогда не видел, чтобы взрослые хищники активно преследовали других взрослых животных собственного вида с тем, чтобы их съесть. Почему? Мы так привыкли размышлять об эволюции с точки зрения “блага для вида”, что часто забываем задавать такие совершенно разумные вопросы, как, например: “Почему львы не охотятся на других львов?” Есть и другой неплохой вопрос подобного типа, который редко задается: “Почему антилопы убегают от львов вместо того, чтобы дать им сдачи?”

Львы не охотятся на львов, потому что для них это не было бы эволюционно стабильной стратегией. Каннибальская стратегия оказалась бы нестабильной по той же самой причине, по какой нестабильна стратегия Ястреба в примере, приводившемся выше. Слишком велика опасность ответного удара. В конфликтах между представителями разных видов это менее вероятно. Поэтому-то столь многие животные-жертвы убегают, вместо того чтобы дать сдачи. Первоначально это, вероятно, проистекает из того, что взаимодействию между двумя животными, относящимися к разным видам, свойственна некая асимметрия – бóльшая, чем асимметрия между членами одного вида. Во всех случаях, когда между противниками существует сильная асимметрия, эволюционно стабильными стратегиями, вероятно, будут условные стратегии, зависящие от данной асимметрии. Возникновение стратегий, аналогичных стратегии: “Если ты мельче – убегай, если крупнее – нападай”, весьма вероятно в стычках между представителями разных видов, потому что между ними имеется так много асимметрий. Львы и антилопы достигли своего рода стабильности путем эволюционной дивергенции, которая усиливала изначальную асимметрию в состязаниях во все возрастающей степени. Они достигли высокого мастерства в искусствах охоты и бегства соответственно. Мутантная антилопа, которая избрала бы против львов стратегию “стой и дерись”, достигла бы меньших успехов, чем ее соперницы – антилопы, исчезающие за горизонтом.

Я предчувствую, что, возможно, со временем мы будем рассматривать концепцию ЭСС как одно из важнейших достижений эволюционной теории после Дарвина[28]. Она применима во всех случаях, когда речь идет о столкновении интересов, то есть практически повсеместно. Те, кто занимается изучением поведения животных, приобрели привычку говорить о так называемой “социальной организации”. Слишком часто социальная организация какого-либо вида рассматривается как совершенно самостоятельная реальность с собственным биологическим “преимуществом”. Примером, который я уже приводил, служит “иерархическая структура”. Я уверен, что за многими из высказываний биологов о социальной организации можно разглядеть неявные допущения, типичные для сторонников группового отбора. Концепция ЭСС Мейнарда Смита дает нам возможность впервые ясно увидеть, как совокупность независимых эгоистичных единиц может приобрести сходство с единым организованным целым. Я полагаю, что это окажется верным не только в отношении социальной организации в пределах вида, но и в отношении “экосистем” и “сообществ”, состоящих из многих видов. Я думаю, что со временем концепция ЭСС вызовет революцию в экологии.

Эта концепция применима также к идее, высказанной в главе 3, где проводилась аналогия между генами тела и командой гребцов: и тем, и другим необходим командный дух. Отбор сохраняет не просто “хорошие” гены, а те гены из данного генофонда, которые хорошо функционируют на фоне других генов. Хороший ген должен быть совместим с другими генами, с которыми ему предстоит существовать в длинном ряду последовательных тел. Ген, определяющий способность зубов перемалывать растительную пищу, хорош в генофонде растительноядного, но не в генофонде плотоядного животного.

Можно представить себе, что совместимое сочетание генов отбирается вместе как единица. По-видимому, именно таким образом возникла мимикрия у бабочек, описанная в главе 3. Но сила концепции ЭСС заключается в том, что она дает нам возможность понять, как отбор мог достигнуть таких же результатов на уровне независимого гена. Эти гены не обязательно должны быть сцеплены в одной хромосоме.

Аналогия с гребцами на самом деле не может объяснить эту мысль. Попытаемся подойти к ней как можно ближе. Допустим, для достижения командой действительного успеха гребцы должны координировать свои действия с помощью слов. Допустим далее, что среди гребцов, из которых предстоит набрать команду, одни говорят только по-английски, другие – только по-немецки. Англичане и немцы по своим спортивным качествам примерно равны. Однако ввиду того, что обмен информацией между гребцами играет важную роль, смешанная команда выигрывает меньше гонок, чем чисто английская или чисто немецкая.

Капитан не понимает этого. Он просто непрерывно перетасовывает гребцов, давая высокие оценки гребцам из лодок, выигрывающих гонки, и снижая оценки гребцам из проигравших лодок. Если при этом окажется, что среди гребцов, из числа которых он набирает себе команду, преобладают англичане, то из этого следует, что любой немец, попавший в его лодку, с большой вероятностью станет причиной поражения, потому что общение между гребцами будет нарушено. И наоборот, если в “фонде” гребцов преобладают немцы, то любая лодка, в которую попадает один англичанин, скорее всего проиграет соревнования. Очевидно, что наибольшими шансами на выигрыш обладают команды, состоящие из одних англичан либо из одних немцев, но не смешанные команды. На первый взгляд создается впечатление, что капитан отбирает себе группу гребцов, говорящих на одном языке, как некую единицу. Это, однако, не так. Он отбирает отдельных гребцов, которые, по-видимому, способны выигрывать гонки. Между тем способность отдельного индивидуума выигрывать гонки зависит от того, какие другие индивидуумы имеются среди кандидатов, из которых набирается команда. Представители меньшинства автоматически попадают в категорию нежелательных не потому, что они плохие гребцы, а потому, что относятся к меньшинству. Аналогичным образом тот факт, что критерием для отбора генов служит взаимная совместимость, вовсе не означает, что мы должны воспринимать группы генов так, будто они отбирались в виде неких единиц, то есть как в случае бабочек. Отбор на таком низком уровне, как отдельный ген, может создавать впечатление отбора, происходящего на каком-то более высоком уровне.

В данном примере отбор благоприятствует простому конформизму. Возможна и более интересная ситуация: гены сохраняются отбором, потому что они дополняют друг друга. Возвращаясь к нашей аналогии, допустим, что идеально подобранная команда состоит из четырех правшей и четырех левшей. Допустим также, что капитан, не подозревающий об этом обстоятельстве, отбирает гребцов исключительно по заработанным очкам. Если при этом в фонде кандидатов доминируют правши, то любой левша будет обладать преимуществом: он будет способствовать победе каждой лодки, в которую попадет, и поэтому будет казаться хорошим гребцом. И наоборот, в фонде, в котором преобладают левши, преимуществом будет обладать правша. Это сходно с преимуществом Ястреба в популяции Голубей и Голубя – в популяции Ястребов. Разница в том, что в первом случае речь шла о взаимодействиях между отдельными телами – эгоистичными машинами, тогда как здесь мы говорим, по аналогии, о взаимодействиях между генами, находящимися в телах.

Отбор “хороших” гребцов, производимый капитаном вслепую, даст в итоге идеальную команду, состоящую из четырех левшей и четырех правшей. Создается впечатление, что он выбрал их всех сразу как целостную сбалансированную единицу. Но, как мне кажется, проще считать, что он отбирал их на более низком уровне – на уровне независимых кандидатов. Эволюционно стабильное состояние (“стратегия” в данном контексте вводит в заблуждение) – четыре правши и четыре левши – возникает просто как следствие отбора на более низком уровне, производимого на основе очевидного преимущества.

Генофонд – это среда, в которой ген находится долго. “Хорошие” гены отбираются вслепую как гены, выжившие в данном генофонде. Это не теория, это даже не факт, обнаруженный в результате наблюдения. Такое утверждение – попросту тавтология. Интересно другое: что делает ген хорошим? В качестве первого приближения я высказал мысль, что ген попадает в категорию хороших, если он способен создавать эффективные машины выживания – тела. Эту идею следует несколько усовершенствовать. Генофонд становится эволюционно стабильным множеством генов, определяемым как генофонд, если в него не может включиться никакой новый ген. Большая часть новых генов, возникающих в результате мутирования, перестановки или иммиграции, быстро устраняется естественным отбором: восстанавливается эволюционно стабильное множество. Время от времени новому гену удается проникнуть в такое множество: ему удается распространиться в генофонде. Существует некий переходный период нестабильности, завершающийся появлением нового эволюционно стабильного множества: происходит маленькое эволюционное событие. По аналогии со стратегиями агрессии популяция может иметь более одной альтернативной стабильной точки и может перескакивать с одной на другую. Прогрессивная эволюция – это, возможно, не столько упорное карабканье вверх, сколько ряд дискретных шагов от одного стабильного плато к другому[29]. Может показаться, что популяция в целом ведет себя как отдельная саморегулирующаяся единица. Но эта иллюзия возникает в результате того, что отбор происходит на уровне единичного гена. Гены отбираются по “заслугам”. Но заслуги данного гена оцениваются по его поведению на фоне эволюционно стабильного множества, каковым является нынешний генофонд.

Сосредоточив внимание на агрессивных взаимодействиях между индивидуумами, Мейнард Смит смог очень ясно изложить ситуацию. Нетрудно представить себе стабильное соотношение тел Ястребов и Голубей, потому что тела – крупные объекты, которые мы можем видеть. Однако взаимодействия между генами, локализованными в разных телах, – это вершина айсберга. Огромное большинство существенных взаимодействий между генами эволюционно стабильного множества – генофонда – продолжается внутри отдельных тел. Эти взаимодействия трудно наблюдать, потому что они происходят в клетках, в особенности в клетках развивающихся зародышей. Хорошо интегрированные тела существуют благодаря тому, что они являются продуктом эволюционно стабильного множества эгоистичных генов.

Но я должен вернуться на уровень взаимодействий между животными. Для понимания агрессии было удобно рассматривать отдельных животных как независимые эгоистичные машины. Эта модель распадается, если рассматриваемые индивидуумы связаны близким родством (родные или двоюродные братья и сестры, родители и дети). У родственников значительную долю генотипа составляют одинаковые гены. Поэтому каждому эгоистичному гену приходится учитывать интересы нескольких разных тел. Объяснение этому будет дано в следующей главе.

 

 

Глава 6. Генное братство

Эгоистичный ген? Что это такое? Один-единственный физический кусочек ДНК. Точно так же, как и в первичном бульоне, это все реплики одного определенного кусочка ДНК, распространенные по всему свету. Если мы позволяем себе вольность говорить о генах как о сознательных существах, обладающих душой (постоянно успокаивая себя, что при желании мы в любой момент можем вернуться от неряшливых выражений к приличным терминам), правомерно задать вопрос: что пытается совершить каждый отдельный эгоистичный ген? Он старается стать все более многочисленным в данном генофонде. В принципе он делает это, помогая программировать тела, в которых находится, на выживание и размножение. Но здесь мы подчеркиваем, что “он” – это некий фактор, существующий одновременно во многих телах. Главная мысль этой главы заключается в том, что каждый данный ген, возможно, способен помогать своим репликам, находящимся в других телах. В таком случае можно говорить о некоем индивидуальном альтруизме, обусловленном, однако, эгоистичностью гена.

Рассмотрим ген, детерминирующий альбинизм у человека. На самом деле существует несколько генов альбинизма, но я говорю лишь об одном из них. Это рецессивный ген, то есть чтобы быть альбиносом, человек должен получить двойную дозу данного гена. Альбиносы встречаются среди нас с частотой примерно 1 к 20 тысячам. Однако у одного человека из семидесяти ген альбинизма содержится в единичной дозе, и эти люди не альбиносы. Поскольку ген альбинизма имеется у многих людей, теоретически он мог бы обеспечить свое сохранение в генофонде, программируя тела этих людей так, чтобы они относились альтруистично к другим альбиносам, раз известно, что они несут тот же ген. Ген альбинизма был бы очень доволен, если бы некоторые из тел, в которых он обитает, умирали, при условии, что это помогло бы выжить другим телам, содержащим тот же ген. Если бы ген альбинизма мог заставить одно из содержащих его тел спасти жизни десяти альбиносам, то даже гибель одного альтруиста была бы полностью компенсирована повышением числа генов альбинизма в генофонде.

Должны ли мы в таком случае ожидать, что альбиносы будут хорошо относиться друг к другу? На это, вероятно, следует ответить “нет”. Для того чтобы понять, почему нет, оставим на время нашу метафору, представляющую ген как фактор, наделенный сознанием: в данном контексте это собьет нас с толку. Нам следует вернуться к скучным, но корректным выражениям. Гены альбинизма на самом деле не “хотят” выжить или помогать другим генам альбинизма. Но если ген альбинизма хотя бы побуждает тела, в которых он обитает, вести себя альтруистично по отношению к другим альбиносам, волей-неволей это автоматически приведет к увеличению его численности в генофонде. Однако чтобы это случилось, упомянутый ген должен оказывать на тела два независимых воздействия. Он должен не только вызывать свой обычный эффект, то есть отсутствие пигментации покровов, но и побуждать тела проявлять избирательный альтруизм по отношению к индивидуумам с очень слабой пигментацией. Такой ген, обладающий двумя эффектами, если бы он существовал, мог бы весьма успешно действовать в популяции.

Как уже подчеркивалось в главе 3, гены действительно обладают множественными эффектами. Теоретически возможно возникновение гена, детерминирующего какую-то внешнюю “метку”, например бледную кожу, или зеленую бороду, или что-нибудь столь же приметное, и одновременно тенденцию особенно хорошо относиться к носителям такой метки. Это возможно, но маловероятно. С равной вероятностью зеленобородость может быть сцеплена со склонностью к врастанию ногтей на пальцах ног или с любым другим признаком, а симпатия к зеленым бородам – с неспособностью воспринимать аромат фрезий. Маловероятно, чтобы один и тот же ген детерминировал данную метку и соответствующий ей тип альтруизма. Тем не менее то, что можно было бы назвать “эффектом альтруизма к зеленой бороде”, теоретически допустимо.

Произвольная метка вроде зеленой бороды – просто один из способов, с помощью которого ген мог бы “узнавать” о наличии в других индивидуумах копий самого себя. Есть ли какие-либо другие способы? Да, и наиболее прямой из них состоит в следующем. Обладателя какого-либо альтруистичного гена можно было бы узнать просто по тому, что он совершает альтруистичные акты. Ген мог бы процветать в генофонде, если бы он “сказал” своему телу нечто вроде: “Тело! Если A тонет при попытке спасти кого-то другого, прыгай и спасай A”. Причина, по которой такой ген мог бы действовать столь благородно, состоит в том, что вероятность наличия у A тех же самых альтруистичных генов – генов-спасателей – выше средней. Тот факт, что A пытался спасти кого-то другого, представляет собой метку, эквивалентную зеленой бороде. Она менее надуманна, чем зеленая борода, но тем не менее кажется довольно неправдоподобной. Существуют ли какие-то заслуживающие доверия способы, которые позволяли бы генам “узнавать” свои копии в других индивидуумах?

Да, существуют. Нетрудно показать, что у близких родственников вероятность наличия общих генов выше средней. Давно стало ясно, что именно по этой причине столь обычен альтруизм родителей по отношению к детям. А Рональд Э. Фишер, Джон Б. С. Холдейн и в особенности Уильям Д. Гамильтон поняли, что это распространяется и на других близких родственников: сестер и братьев, как родных, так и двоюродных, племянников и племянниц. Если индивидуум умирает, чтобы спасти десять близких родственников, одна копия гена, определяющего альтруизм в отношении близких родственников (кин-альтруизм), может погибнуть, однако гораздо большее число копий того же гена будет спасено.

“Большее число” – это весьма неопределенно, равно как и “близкие родственники”. Как показал Гамильтон, возможна и большая определенность. Две его работы, опубликованные в 1964 году, принадлежат к числу самых значительных вкладов в социальную этологию из когда-либо написанных, и я никогда не мог понять, почему этологи так пренебрегают этими работами (имя Гамильтона даже не упоминается в указателях двух больших учебников этологии, опубликованных в 1970 году)[30]. К счастью, в последнее время интерес к его идеям начинает возрождаться. Работы Гамильтона насыщены математикой, однако их основные принципы схватываются интуитивно, без строгих математических рассуждений, хотя при этом неизбежно некоторое упрощение. Нам предстоит вычислить вероятность наличия определенного гена у двух индивидуумов, например у двух сестер.

Допустим для простоты, что мы рассматриваем гены, редко встречающиеся в генофонде в целом[31]. У большинства людей имеется “ген, определяющий невозможность быть альбиносом”, независимо от того, связаны люди родством или нет. Такое широкое распространение этого гена объясняется тем, что в природе вероятность выживания альбиносов ниже, чем неальбиносов, хотя бы потому, что солнце ослепляет их и им относительно трудно заметить приближающегося хищника. Нас не интересуют причины преобладания в генофонде таких явно “хороших” генов, как ген “не-альбинизма”. Мы стремимся объяснить успех генов, обусловленный именно их альтруизмом. Поэтому мы можем допустить, что по крайней мере на ранних стадиях этого эволюционного процесса такие гены редки. Здесь важно отметить, что даже ген, редкий в популяции в целом, может часто встречаться в отдельной семье. И у меня, и у вас имеется некоторое число генов, редко встречающихся в популяции в целом. Шансов на то, что вы и я несем одинаковые редкие гены, очень мало. Однако весьма вероятно, что у моей сестры имеется тот же самый редкий ген, что и у меня, и столь же вероятно, что вы и ваша сестра тоже несете один и тот же редкий ген. Шансы в данном случае составляют 50 %, и объяснить причины этого нетрудно.

Допустим, что в вашем генотипе имеется одна копия гена G. Вы могли получить ее либо от своего отца, либо от матери (для простоты можно отбросить различные редко встречающиеся возможности: что ген G – новая мутация, что этот ген имелся у обоих ваших родителей или же в двойной дозе у одного из них). Пусть вы получили ген G от своего отца. В таком случае каждая из обычных клеток его тела содержала по одной копии этого гена. Как вы, вероятно, помните, каждый сперматозоид, образующийся у мужчины, содержит половину его генов. Таким образом, вероятность того, что в сперматозоид, зачавший вашу сестру, попадает ген G, равна 50 %. Если же вы получили ген G от своей матери, то из точно таких же рассуждений вытекает, что половина ее яйцеклеток должна была содержать ген G. Вероятность получения гена G вашей сестрой опять-таки равна 50 %. Это означает, что если у вас есть сто братьев и сестер, то примерно половина из них должна обладать любым имеющимся у вас редким геном. Это означает также, что если у вас есть сто редких генов, то примерно пятьдесят из них имеются в теле любого из ваших братьев или сестер.

Аналогичные вычисления можно произвести для лиц, связанных родством любой степени. Важные зависимости существуют между родителями и детьми. Если у вас имеется одна доза гена H, то вероятность наличия этого гена у каждого из ваших детей равна 50 %, потому что он содержится в половине ваших половых клеток, а каждый из ваших детей был зачат при участии одной из этих половых клеток. Если у вас имеется одна доза гена J, то вероятность того, что этот ген имелся также у вашего отца, равна 50 %, потому что вы получили половину своих генов от него, а половину – от матери. Для удобства мы пользуемся коэффициентом родства, выражающим вероятность наличия данного гена у двух родственников. Коэффициент родства между двумя братьями равен 1/2, поскольку половина генов, имеющихся у одного из братьев, будет обнаружена и у другого. Это средняя цифра: в результате мейотического драйва у данных двух братьев может быть больше или меньше общих генов. Коэффициент родства между родителем и ребенком всегда равен точно 1/2. Проделывать всякий раз эти вычисления с самого начала довольно скучно. Существует грубое, но эффективное правило для установления коэффициента родства между двумя индивидуумами, A и B. Оно может оказаться вам полезным при составлении завещания или для объяснения явных случаев сходства в семье. Оно пригодно для всех простых ситуаций, но не действует при кровосмесительных браках и, как мы увидим, у некоторых насекомых.

Установим сначала всех общих предков A и B. Например, общие предки двух двоюродных братьев или сестер – это их общие дед и бабка. По логике вещей все предки этих общих предков также будут общими для A и B. Однако мы пренебрежем всеми общими предками, кроме самых недавних. В этом смысле у двоюродных братьев и сестер только два общих предка. Если B – прямой потомок A, например его правнук, то сам A и есть тот “общий предок”, которого мы ищем.

Найдя общего(их) предка(ов) А и B, займемся вычислением генерационного расстояния (число разделяющих поколений) между ними. Для этого, начав с A, нужно взобраться вверх по генеалогическому древу до общего предка, а затем спуститься вниз до B. Суммарное число шагов вверх, а затем вниз по древу и составит генерационное расстояние. Если, например, A приходится B дядей, то генерационное расстояние равно 3. Общий предок в данном случае – отец А и дед В. Начав с A, вам следует подняться на одно поколение, чтобы дойти до общего предка. Затем, чтобы дойти до B, вы должны спуститься на два поколения на другой стороне древа. Поэтому генерационное расстояние равно 1 + 2 = 3.

Найдя генерационное расстояние между A и B через конкретного общего предка, можно вычислить ту долю их коэффициента родства, которая обусловлена этим предком. Для этого нужно умножить 1/2 на себя столько раз, сколько шагов в генерационном расстоянии. Если генерационное расстояние равно трем шагам, надо возвести 1/2 в третью степень. Если генерационное расстояние через конкретного общего предка равно g шагам, то доля коэффициента родства, обусловленная этим предком, будет равна (1/2)g.

Это, однако, лишь часть коэффициента родства между A и B. Если у них окажется более одного общего предка, мы должны добавить эквивалентную величину для каждого предка. Обычно у данных двух индивидуумов генерационное расстояние для всех общих предков одинаково. Поэтому, установив коэффициент родства между A и B, обусловленный любым из их общих предков, достаточно лишь умножить его на число этих предков. Например, у двоюродных братьев или сестер имеются два общих предка и генерационное расстояние через каждого из них равно 4. Поэтому коэффициент родства равен 2 (1/2)4 = 1/8. Если A – правнук B, то генерационное расстояние равно 3, а число общих “предков” равно 1 (сам B), так что коэффициент родства составляет 1 (1/2) 3 = 1/8. Аналогичным образом, у вас равные шансы “пойти” как в своего дядю (коэффициент родства = 2 (1/2)3 = 1/4), так и в деда (коэффициент родства = 1 (1/2)2 = 1/4).

В случае такого далекого родства, как четвероюродные братья или сестры (2 (1/2)8 = 1/128), вероятность наличия у них общих генов приближается к вероятности того, что некий ген, имеющийся у A, будет обнаружен у индивидуума, выбранного наудачу из популяции. В том, что касается гена альтруизма, четвероюродный брат мало отличается от какого-нибудь старины Тома, Дика или Гарри. Троюродный брат (коэффициент родства = 1/32) всего лишь чуть ближе, а двоюродный – еще несколько ближе (1/8). Родные братья и сестры и родители и дети очень близки (1/2), а однояйцевые близнецы (коэффициент родства = 1) совершенно идентичны. Тетки и дядья, племянники и племянницы, деды или бабки и внуки, а также единоутробные и единокровные братья и сестры занимают промежуточное положение (коэффициент родства = 1/4).

Теперь мы имеем возможность рассуждать о генах кин-альтруизма гораздо конкретнее. Ген, определяющий самоубийственное спасение пятерых двоюродных братьев и сестер, не станет более многочисленным в популяции, но численность гена, определяющего спасение пятерых родных братьев и сестер ценой собственной гибели, повысится. Минимальное условие, необходимое гену самоубийственного альтруизма для успеха, состоит в том, чтобы спасти больше двух своих сибсов (или детей, или родителей), либо больше двух полусибсов (или дядьев, теток, племянников, племянниц, дедов, бабок, внуков), либо более восьми двоюродных сибсов и так далее. Такой ген в среднем продолжает жить в телах достаточного числа индивидуумов, спасенных альтруистом, чтобы компенсировать гибель его самого.

Если бы некий индивидуум был уверен, что данное лицо является его идентичным близнецом, он заботился бы о его благополучии точно так же, как о собственном. Любой ген близнецового альтруизма имеется у обоих близнецов, поэтому если один из них героически гибнет, спасая другого, ген продолжает жить. Девятипоясные броненосцы обычно рождают идентичную четверню. Насколько мне известно, ни о каких актах героического самопожертвования, совершаемых молодыми броненосцами, не сообщалось; однако высказывалось мнение, что у них определенно следует ожидать каких-то сильных проявлений альтруизма. Если кто-нибудь собирается ехать в Южную Америку, то стоило бы заняться этим[32].

Теперь нам понятно, что забота о потомстве – всего лишь частный случай кин-альтруизма. С генетической точки зрения взрослый индивидуум должен уделять совершенно столько же заботы и внимания своему осиротевшему брату-младенцу, как и собственным детям. Коэффициент его родства с обоими младенцами совершенно одинаков: 1/2. С точки зрения генного отбора ген, детерминирующий альтруистичное поведение старшей сестры, должен иметь столько же шансов распространиться в популяции, как и ген родительского альтруизма. На самом деле это очень сильное упрощение (по многим причинам, которые мы рассмотрим позднее), а братская или сестринская забота отнюдь не столь обычна в природе, как родительская. Здесь, однако, я хочу показать, что с генетической точки зрения нет ничего особенного во взаимоотношениях родители-дети по сравнению с взаимоотношениями братья-сестры. Тот факт, что родители наделяют своих детей генами, а сестры не наделяют ими друг друга, не имеет значения, поскольку обе сестры получают идентичные реплики одних и тех же генов от одних и тех же родителей.

Некоторые авторы используют термин кин-отбор для того, чтобы отличать этот тип естественного отбора от группового отбора (дифференциальное выживание групп) и индивидуального отбора (дифференциальное выживание индивидуумов). Кин-отбор ответствен за внутрисемейный альтруизм: чем теснее родство, тем сильнее отбор. В термине “кин-отбор” нет ничего плохого, но, к сожалению, от него, возможно, придется отказаться ввиду того, что в последнее время его совершенно неправильно употребляют, и в будущем это может привести биологов в полное замешательство. Эдвард О. Уилсон в своей (в остальном прекрасной) книге “Социобиология: новый синтез” определяет кин-отбор как особый случай группового отбора. В книге есть схема, которая ясно показывает, что с точки зрения Уилсона кин-отбор занимает промежуточное положение между “индивидуальным отбором” и “групповым отбором” в общепринятом смысле, то есть в том смысле, в каком я их употреблял в главе 1. Между тем групповой отбор – даже по определению самого Уилсона – означает дифференциальное выживание групп индивидуумов. Конечно, в некотором смысле семья – это особый тип группы. Однако суть рассуждений Гамильтона сводится к тому, что различие между семьей и несемьей не есть нечто определенное и нерушимое, а зависит от математической вероятности. Теория Гамильтона отнюдь не утверждает, что животные должны относиться альтруистически ко всем “членам семьи” и эгоистически – ко всем другим. Между семьей и несемьей нельзя провести строгую границу. Нам не надо решать, следует ли, например, относить к числу членов семьи троюродных братьев и сестер или считать их чужими: мы просто ожидаем, что вероятность проявления альтруизма в отношении троюродных братьев или сестер должна составлять 1/16 вероятности альтруизма в отношении потомков или сибсов. Кин-отбор никак нельзя считать особым случаем группового отбора[33]. Это особое следствие генного отбора.

Уилсоновское определение кин-отбора содержит и другой, еще более серьезный недостаток. Оно преднамеренно исключает потомков: они не считаются родственниками![34] Разумеется, Уилсон прекрасно знает, что потомки связаны родством со своими родителями, но предпочитает не взывать к теории кин-отбора для того, чтобы объяснить альтруизм, проявляемый родителями в заботе о собственных потомках. Он, конечно, вправе определять термин так, как считает нужным, но это определение создает сильную путаницу, и я надеюсь, что в следующих изданиях своей действительно очень ценной книги он его изменит. С генетической точки зрения родительская забота о потомстве и братско-сестринский альтруизм возникли в процессе эволюции по совершенно одной и той же причине: в обоих случаях велика вероятность наличия гена альтруизма в теле опекаемого.

Я прошу прощения у читателя-неспециалиста за эту небольшую обличительную речь и спешу вернуться к нашей главной теме. До сих пор я слишком сильно упрощал изложение, но настало время ввести некоторые оценки. Я говорил просто о генах, детерминирующих самоубийство ради спасения жизни определенного числа родственных индивидуумов, коэффициент родства с которыми точно известен. Совершенно очевидно, что в действительности животные не способны точно сосчитать, сколько родственных индивидуумов они спасают, или провести в уме гамильтоновские расчеты, даже если бы они могли каким-то образом наверняка знать, что данные индивидуумы в самом деле их родные, двоюродные и так далее братья и сестры.

В реальной жизни верное самоубийство и несомненное “спасение” жизни должны быть заменены статистическим риском гибели как для себя, так и для других. Может статься, что имеет смысл спасать даже четвероюродного брата, если при этом риск для себя очень невелик. Кроме того, вы (как и родственник, которого вы собираетесь спасать) в любом случае в один прекрасный день умрете. Для каждого индивидуума существует некая “ожидаемая продолжительность жизни”, которую страховая компания может вычислить с некоторой степенью точности. Спасение жизни родственника, который скоро умрет от старости, окажет меньшее влияние на генофонд, чем спасение жизни столь же близкого родственника, у которого большая часть жизни еще впереди.

Наши изящные симметричные вычисления коэффициентов родства придется модифицировать с учетом путаных и сложных взвешиваний, производимых статистиками страховых компаний. Деды и бабки, с одной стороны, и внуки – с другой, в генетическом смысле имеют равные основания проявлять друг к другу альтруизм, поскольку их гены на 1/4 одинаковы. Но так как ожидаемая продолжительность жизни внуков больше, гены альтруизма дедов и бабок по отношению к внукам имеют более высокую селективную ценность, чем гены альтруизма внуков по отношению к дедам и бабкам. Вполне возможно, что чистый выигрыш от помощи, оказанной молодому дальнему родственнику, будет выше чистого выигрыша от помощи пожилому близкому родственнику. (Кстати, ожидаемая продолжительность жизни у дедов и бабок вовсе необязательно должна быть меньше, чем у внуков. У видов с высокой смертностью в раннем возрасте возможно обратное соотношение.)

Продолжая “страховочную” аналогию, можно рассматривать индивидуумов как лиц, страхующих жизнь. Данный индивидуум может рискнуть известной частью своего состояния на страховку жизни другого человека. При этом он принимает во внимание коэффициент своего родства с этим человеком, а также его “надежность” в смысле ожидаемой продолжительности жизни по сравнению со своей собственной. Строго говоря, следовало бы поменять “ожидаемую продолжительность жизни” на “ожидаемую репродуктивность” или еще строже – на “общую способность благоприятствовать собственным генам в течение будущей жизни”. В таком случае для эволюции альтруистичного поведения суммарный риск для альтруиста должен быть меньше, чем суммарный выигрыш для реципиента, умноженный на коэффициент родства. Риск и выигрыш следует вычислять упомянутым выше сложным способом, применяемым страховыми обществами.

Но можно ли ожидать, что бедная машина выживания будет способна произвести эти сложные вычисления, да еще в спешке! Даже великий математический биолог Джон Б. С. Холдейн (в опубликованной в 1955 году работе, где он предвосхитил концепцию Гамильтона, постулировав распространение гена, детерминирующего спасение тонущих родственников) заметил, что “в тех двух случаях, когда я вытаскивал из воды с минимальнейшим риском для себя людей, которые могли бы утонуть, у меня не было никакого времени на подобные вычисления”. К счастью, как это хорошо знал Холдейн, предполагать, что машины выживания сознательно производят в уме вычисления, нет необходимости. Совершенно так же, как мы применяем логарифмическую линейку, не сознавая, что мы на самом деле используем логарифмы, животное может быть запрограммировано таким образом, что оно ведет себя, как если бы оно производило сложные вычисления.

Вообразить это не столь уж сложно. Когда человек подбрасывает мяч высоко в воздух и вновь ловит его, он ведет себя так, как если бы он решал систему дифференциальных уравнений, определяющих траекторию мяча. Он может не знать, что такое дифференциальное уравнение, и не стремиться узнать, но это никак не отражается на его искусстве играть с мячом. На каком-то подсознательном уровне происходит что-то, равноценное математическим вычислениям. Точно так же, когда человек принимает трудное решение, предварительно взвесив все “за” и “против” и все последствия своего решения, которые он может вообразить, его действия функционально равноценны вычислению “взвешенной суммы”, производимому компьютером.

Если бы нам надо было составить программу, моделирующую на компьютере поведение образцовой машины выживания, которая принимает решения о том, следует ли ей вести себя альтруистически, мы, вероятно, действовали бы примерно следующим образом. Сначала надо составить список всех альтернативных типов поведения животного. Затем для каждого типа поведения составить программу вычисления взвешенной суммы. Все выигрыши, получаемые в результате поведения данного типа, помечаются знаком плюс, а все связанные с ним риски – знаком минус. Все выигрыши и все риски перед суммированием следует взвесить путем умножения на соответствующий коэффициент родства. Для простоты мы можем не проводить другие взвешивания, например связанные с возрастом и состоянием здоровья. Поскольку коэффициент родства данного индивидуума с самим собой равен 1 (то есть он содержит, как это совершенно очевидно, 100 % собственных генов), риски и выигрыши для себя не надо снижать, и в вычисления они должны входить с полным весом. Общая сумма для каждого из альтернативных типов поведения будет выглядеть следующим образом: чистый выигрыш при данном типе поведения = выигрыш для себя – риск для себя + 1/2 выигрыша для брата – 1/2 риска для брата + 1/2 выигрыша для другого брата – 1/2 риска для другого брата + 1/8 выигрыша для двоюродного брата – 1/8 риска для двоюродного брата + 1/2 выигрыша для ребенка – 1/2 риска для ребенка + и так далее.

Результатом такого суммирования выигрышей будет число, называемое оценкой чистого выигрыша при данном типе поведения. Затем модельное животное вычисляет эквивалентную сумму для каждого альтернативного типа поведения, имеющегося в его репертуаре. Наконец, оно выбирает и реализует поведение того типа, при котором достигается наивысший чистый выигрыш. Даже если все оценки оказываются со знаком минус, оно выбирает наилучшую форму поведения, то есть связанную с наименьшим риском. Помните, что любое позитивное действие сопряжено с затратами энергии и времени, которые можно было бы израсходовать на другие дела. Если ничегонеделанье оказывается тем “поведением”, при котором достигается наивысший выигрыш, модельное животное будет бездельничать.

Это в высшей степени упрощенный пример, в данном случае выраженный в форме субъективного монолога, а не компьютерной модели. Предположим, что я – животное, нашедшее восемь грибов. Прикинув их питательную ценность и несколько уменьшив оценку ввиду наличия риска, хотя и очень незначительного (они, возможно, ядовиты), я решил, что каждый гриб “стоит” 6 единиц (единицы – произвольно установленные выигрыши, как в главе 5). Грибы такие большие, что я мог бы съесть лишь три из них. Должен ли я известить кого-то другого о находке? Кто может меня услышать? Мой брат B (коэффициент его родства со мной = 1/2), двоюродный брат C (коэффициент родства = 1/8) и D (он мне, в общем, не родственник; коэффициент его родства со мной выражается такой малой величиной, что ее практически можно приравнять к нулю). Если я промолчу о своей находке, мой чистый выигрыш составит 6 за каждый из трех съеденных мной грибов, то есть всего 18. Чтобы оценить чистый выигрыш в том случае, если я объявлю о своей находке, нужно будет произвести некоторые расчеты. Восемь грибов придется разделить поровну на четверых. Выигрыш, который я получу от двух съеденных мной самим грибов, по 6 единиц каждый, составит 12. Но я получу также некоторый выигрыш от того, что мой родной и двоюродный братья съедят по два гриба каждый, поскольку у меня есть общие с ними гены. Мой суммарный выигрыш составит: (1 12) + (1/2 12) + (1/8 12) + (0 12) = 19 1/2. Соответствующий чистый выигрыш при эгоистичном поведении был равен 18. Результаты практически совпадают, но приговор ясен. Я должен подать сигнал, что найдена пища, и проявленный мной альтруизм в этом случае обернется выигрышем для моих эгоистичных генов.

Я упростил ситуацию, сделав допущение, что индивидуальное животное вычисляет, какой образ действий будет оптимальным для его генов. На самом же деле генофонд пополняется генами, под действием которых тела ведут себя так, как если бы они производили подобные вычисления.

Во всяком случае эти вычисления – лишь весьма предварительное первое приближение к тому, какими они должны быть в идеале. Мы пренебрегли многими факторами, в том числе возрастом производящих эти вычисления индивидуумов. Кроме того, если я перед тем, как обнаружить грибы, плотно поел, чистый выигрыш от оповещения о моей находке будет выше, чем если бы я был голоден. В лучшем из миров возможностям прогрессивного усовершенствования вычислений нет конца. Но реальная жизнь протекает не в лучшем из миров. Мы не можем ожидать, что реальные животные, выбирая оптимальное решение, будут учитывать абсолютно все детали. Путем наблюдений и экспериментов в природных условиях нам предстоит выяснить, сколь близко на самом деле реальные животные подходят к достижению идеального анализа расходов – доходов.

Просто для того, чтобы убедить себя, что субъективные примеры не слишком сильно увели нас в сторону, вернемся ненадолго к генному языку. Живые тела – это машины, запрограммированные теми генами, которые выжили. Гены, которые выжили, сумели сделать это в условиях, которые в среднем были характерны для среды данного вида. Поэтому оценки расходов и доходов основаны на прошлом “опыте”, точно так же, как у человека, принимающего решение. Однако опыт в этом случае означает опыт гена или, точнее, условий, в которых ген сумел выжить в прошлом. (Поскольку гены, кроме того, наделяют машины выживания способностью к научению, можно сказать, что некоторые оценки расходов – доходов производились также на основе индивидуального опыта.) До тех пор, пока условия изменяются не слишком сильно, эти оценки будут оставаться надежными и машины выживания будут в среднем принимать верные решения. В случае коренных изменений условий машины выживания будут склонны принимать ошибочные решения и их гены будут расплачиваться за это. Именно так и бывает: если человек принимает решения, основанные на устаревшей информации, эти решения обычно оказываются ошибочными.

В оценки коэффициентов родства также могут вкрасться ошибки и неточности. До сих пор в наших упрощенных расчетах мы исходили из того, что машинам выживания как бы известно, кто связан с ними родством и каков коэффициент этого родства. В реальной жизни такая твердая уверенность иногда существует, но чаще коэффициент родства можно оценить лишь как некую среднюю величину. Допустим, например, что A и B могут быть с равной вероятностью единоутробными либо родными братьями. Их коэффициент родства равен 1/4 либо 1/2, но поскольку нам не известно, являются ли они единоутробными или родными братьями, эффективно можно использовать только среднее значение, то есть 3/8. Если же твердо известно, что мать у них одна, но вероятность общего отца составляет всего 1 к 10, то можно на 90 % быть уверенными в том, что они единоутробные братья, и на 100 % – что они родные братья. Эффективный коэффициент родства составляет в этом случае: (1/10 1/2) + (9/10 1/4) = 0,275.

Но, говоря о девяностопроцентной уверенности, кого мы имеем в виду? Натуралиста, который обрел ее после длительных полевых исследований, или самих животных? При благоприятных обстоятельствах это почти одно и то же. Для того, чтобы понять это, нам надо подумать, каким образом животные могли бы распознавать близких родственников[35].

Мы знаем, кто наши родственники, потому что нам сказали об этом, потому что у них есть имена, потому что у нас существуют формальные браки, а также соответствующие записи и просто хорошая память. Многие социальные антропологи поглощены выяснением “кровного родства” в обществах, которые они изучают. Они имеют при этом в виду не подлинное генетическое родство, а субъективные и культурные представления о родстве. В обычаях и ритуальных обрядах различных племен придается большое значение кровному родству. Широко распространено поклонение предкам. Во многих областях жизни доминируют чувство долга и верность семье. Кровную месть и войны между кланами легко интерпретировать в свете генетической теории Гамильтона. Запрет на кровосмешение доказывает осознание человеком значения кровного родства, хотя генетические преимущества, которые дает этот запрет, не имеют никакого отношения к альтруизму: он, вероятно, связан с пагубными эффектами рецессивных генов, проявляющимися при родственных браках. (Почему-то многим антропологам не нравится это объяснение.)[36]

Как дикие животные могли бы “знать”, кто приходится им родственниками, или, иными словами, каким правилам они должны следовать в своем поведении, чтобы его косвенным эффектом была именно способность распознавать кровных родственников? Нужно, чтобы животные получали от своих генов какое-то простое правило действия, которое не связано с полным осознанием конечной цели данного действия, но которое работает по крайней мере при средних условиях. Нам, людям, знакомы эти правила, и они столь могущественны, что если мы не слишком дальновидны, то подчиняемся правилу как таковому, даже когда прекрасно видим, что оно не сулит ни нам, ни кому-либо другому ничего хорошего. Например, некоторые правоверные евреи или мусульмане готовы лучше голодать, чем нарушить запрет на свинину. Каковы те простые практические правила, которым могли бы подчиняться животные и косвенный эффект которых при нормальных условиях направлен на благо их близких родственников?

Если бы животные были склонны к альтруизму по отношению к индивидуумам, сходным с ними физически, они могли бы косвенно приносить своим родственникам некоторую пользу. Многое зависело бы от конкретных особенностей данного вида. Такое правило в любом случае привело бы лишь к “верным” в статистическом смысле решениям. Если бы условия менялись (если, например, данный вид стал бы жить гораздо более обширными группами), это могло бы приводить к ошибочным решениям. Можно допустить, что расовые предрассудки – это иррациональное обобщение выработавшейся в процессе кин-отбора тенденции данного индивидуума идентифицировать себя с индивидуумами, физически сходными с собой, и плохо относиться к индивидуумам, имеющим иной облик.

Представитель вида, члены которого перемещаются мало или перемещаются небольшими группами, имеет хорошие шансы на то, что каждый случайно встретившийся ему индивидуум является его довольно близким родственником. В этом случае правило “Относись хорошо к каждому члену данного вида, которого ты встретишь” могло бы иметь положительную ценность для выживания в том смысле, что ген, предрасполагающий своих носителей подчиняться этому правилу, мог бы стать более многочисленным в генофонде. Может быть, именно по этой причине так часты сообщения об альтруистическом поведении в стадах обезьян и китов. Киты и дельфины тонут, если они не имеют возможности дышать воздухом. Неоднократно наблюдали, как детенышей китов и раненых животных, которые были не в состоянии сами подплыть к поверхности воды, поддерживали товарищи по стае, спасая их от гибели. Мы не знаем, имеются ли у китов какие-то способы распознавать своих близких родственников, но это, возможно, не имеет значения.

Быть может, полная вероятность того, что случайный член данного стада – родственник спасающих его индивидуумов, так велика, что затраты на альтруизм оправдывают себя. Между прочим, известен по крайней мере один хорошо документированный случай спасения тонущего человека диким дельфином. Можно считать, что в этом случае правило спасения тонущих членов своего стада дало осечку. Содержащееся в этом правиле “определение” члена стада, который тонет, могло бы звучать примерно следующим образом: “Нечто длинное, барахтающееся, задыхающееся у поверхности воды”.

Сообщалось, что взрослые самцы павианов рискуют жизнью, защищая остальных членов стада от хищников, например от леопардов. Вполне возможно, что у каждого взрослого самца имеется в среднем довольно большое число генов, имеющихся также у других членов данного стада. Ген, который “говорит” своему носителю нечто вроде: “Тело! Если ты оказалось взрослым самцом, защищай это стадо от леопардов”, может стать более многочисленным в данном генофонде. Прежде чем покончить с этим часто приводимым примером, справедливости ради следует добавить, что по крайней мере один уважаемый автор сообщает совершенно иные факты. По ее данным, при появлении леопарда первыми скрываются за горизонтом именно взрослые самцы.

Цыплята кормятся вместе, следуя выводком за матерью. Их звуковые сигналы делятся на два главных типа. Кроме громкого пронзительного писка, о котором я уже упоминал, они во время кормежки мелодично щебечут. На писк, означающий призыв о помощи, обращенный к матери, остальные цыплята не реагируют. Однако щебетанье привлекает их внимание. Это означает, что когда один цыпленок находит пищу, к ней устремляются и остальные: в свете рассмотренного ранее гипотетического примера щебетанье – это сообщение о наличии пищи. Как и в том случае, очевидный альтруизм цыплят можно объяснить с помощью кин-отбора. Поскольку в природе все цыплята данного выводка – родные братья и сестры, ген, детерминирующий издавание этого сигнала, будет распространяться при условии, что потери для издающего сигнал цыпленка меньше, чем половина чистого выигрыша для остальных цыплят. Поскольку выгода распределяется между всеми членами выводка, число которых обычно больше двух, нетрудно представить себе, что это условие выполняется. Конечно, правило нарушается, если речь идет о домашних условиях или о фермах, где кур заставляют насиживать не только свои, но иногда даже индюшачьи или утиные яйца. Однако вряд ли курица или ее цыплята догадываются об этом. Их поведение формировалось в условиях, обычно преобладающих в природе, а в природе, как правило, не сталкиваешься с чужаками в своем гнезде.

Время от времени, однако, такого рода ошибки возникают в природных условиях. У видов, которые живут стадами или стаями, осиротевший детеныш или птенец может быть усыновлен чужой самкой, скорее всего той, которая потеряла собственного детеныша. Те, кто наблюдает за поведением обезьян, иногда называют такую самку “теткой”. В большинстве случаев не удается обнаружить никаких признаков, указывающих на то, что она в самом деле тетка или вообще родственница: если бы наблюдатели больше знали о генах, они никогда не применяли бы так необдуманно столь серьезное слово, как “тетка”. Быть может, однако, в большинстве случаев усыновление, несмотря на всю его трогательность, следует рассматривать как некий сбой в заложенном природой порядке вещей, поскольку великодушная самка, заботясь о сироте, не приносит никакой пользы собственным генам. Она попусту расходует время и энергию, которые могла бы вкладывать в жизнь своих родственников, в особенности собственных детей. По-видимому, эта ошибка возникает слишком редко, чтобы естественный отбор “снизошел” до изменения правила, сделав материнский инстинкт более избирательным. Между прочим, во многих случаях сироту никто не усыновляет и, предоставленный самому себе, он гибнет.

Есть пример ошибки столь экстремальный, что вы, возможно, предпочтете считать его не ошибкой, а фактом, свидетельствующим против теории эгоистичного гена. Речь идет об убитых горем самках обезьян, лишившихся собственных детенышей: наблюдались случаи, когда такая мать крала детеныша у другой самки и ухаживала за ним. Я рассматриваю это как двойную ошибку, поскольку приемная мать не только попусту теряет время: она при этом снимает с самки-соперницы все тяготы, связанные с выращиванием детеныша, давая ей возможность быстрее родить другого малыша. Этот пример представляется мне очень серьезным и заслуживает исчерпывающего анализа. Необходимо выяснить, как часто возникают подобные ситуации, какова средняя степень родства между приемной матерью и детенышем и каково истинное отношение к этому родной матери – ведь в конечном счете ей выгодно, чтобы ее детеныша усыновили. А может быть, матери намеренно пытаются обмануть молодых неопытных самок, заставляя их усыновлять своих детенышей? (Высказывались также предположения, что самки, усыновляющие или крадущие чужих детенышей, извлекают из этого выгоду, приобретая ценный опыт в искусстве выращивания детенышей.)

Примером преднамеренно созданной “осечки” материнского инстинкта служат кукушки и некоторые другие гнездовые паразиты-птицы, откладывающие свои яйца в гнезда каких-нибудь других видов. Кукушки используют в своих интересах правило, заложенное в птичьих родителей: “Относись хорошо к любой маленькой птице, сидящей в построенном тобой гнезде”. Если исключить кукушек, это правило обычно приводит к желаемому результату, ограничивая проявления альтруизма ближайшими родственниками, поскольку гнезда чаще всего расположены достаточно далеко одно от другого, так что все, кто оказались в гнезде данной птицы, почти наверное являются ее собственными птенцами. Взрослые самки серебристой чайки не отличают свои яйца от чужих и безмятежно насиживают яйца других чаек и даже деревянные яйца, подложенные экспериментатором. В природных условиях распознавание яиц не имеет для чаек значения, потому что яйца не могут откатиться достаточно далеко и оказаться вблизи одного из соседних гнезд, находящихся на расстоянии нескольких метров. Чайки узнают, однако, собственных птенцов, и это существенно, поскольку, в отличие от яиц, птенцы бродят вокруг гнезда и легко могут очутиться у соседнего гнезда, что нередко приводит к фатальным результатам (см. главу 1).

В отличие от чаек кайры узнают свои яйца по характеру расположения на скорлупе темных пятнышек и активно выбирают их для насиживания. Это, вероятно, связано с тем, что кайры гнездятся на плоских камнях, где яйца могут раскатываться и перемешиваться с яйцами из других кладок. Но почему же, спрашивается, кайры стараются опознать свои яйца и насиживать только их? Ведь если бы каждая птица заботилась о том, чтобы насиживать чье-то яйцо, то не имело бы значения, сидит ли каждая самка на собственных или чужих яйцах. Так рассуждает приверженец группового отбора. Посмотрим, к чему привело бы образование такого кружка группового насиживания. В среднем кладка кайры состоит из одного яйца. Это означает, что для успешной деятельности кружка взаимного насиживания каждый взрослый индивидуум должен был бы сидеть на одном яйце. Допустим теперь, что кто-то сжульничает и вместо того, чтобы тратить время на высиживание, использует его для откладки новых яиц. Прелесть системы состоит в том, что другие, более альтруистичные индивидуумы будут заботиться об этих яйцах вместо той, которая их отложила. Они будут честно следовать правилу: “Увидев около своего гнезда беспризорное яйцо, подкати его к гнезду и садись на него”. Таким образом, ген, детерминирующий такую систему, распространился бы в популяции и милый дружественный кружок высиживания птенцов распался бы.

Ну, а если честные птицы в ответ на это отказались бы поддаваться шантажу и решили насиживать одно и только одно яйцо? Это расстроило бы планы жуликов: они увидели бы, что их собственные яйца лежат на скалах и никто их не насиживает. Это быстро образумило бы их. Увы, этого не произойдет. Ведь мы постулируем, что насиживающие птицы не отличают одни яйца от других. Поэтому, если добропорядочные птицы введут эту систему с тем, чтобы противостоять жульничеству, яйца, оказавшиеся беспризорными, с равной вероятностью могут оказаться как их собственными, так и яйцами жуликов. Последние, тем не менее, останутся в выигрыше: они отложат больше яиц и оставят больше выживших потомков. Единственный способ, с помощью которого честная чайка могла бы победить жуликов, – активно проявлять пристрастие к собственным яйцам. Иными словами, отказаться от альтруизма и блюсти собственные интересы.

Пользуясь языком Мейнарда Смита, “стратегия” альтруистичного усыновления не является эволюционно стабильной. Она нестабильна в том смысле, что не может быть усовершенствована эгоистичной стратегией противника, состоящей в откладывании большего числа яиц, чем положено каждой особи, и последующем отказе насиживать их. Эта эгоистичная стратегия в свою очередь нестабильна, потому что нестабильна эксплуатируемая ею альтруистичная стратегия, и она исчезнет. Единственная эволюционно стабильная стратегия для кайры состоит в том, чтобы узнавать собственное яйцо и насиживать только его. Именно это она и делает.

 

Виды певчих птиц, на которых паразитируют кукушки, наносят ответный удар, но в данном случае не путем узнавания собственных яиц по общей окраске и размерам, а инстинктивно оказывая предпочтение яйцам с видоспецифичными пятнышками. Поскольку им не грозит паразитирование со стороны членов их собственного вида, это эффективно[37]. Кукушки отвечают на это тем, что их яйца становятся все более похожими на яйца вида-хозяина по окраске, величине и пятнышкам. Это пример обмана, который нередко удается. Такая эволюционная “гонка вооружений” довела мимикрию яиц кукушки до совершенства. Можно предположить, что некоторая доля яиц и птенцов кукушки бывает обнаружена, а те, которые остаются незамеченными, выживают и откладывают яйца, то есть создают следующее поколение кукушек. Так гены, детерминирующие более эффективный обман, распространяются в генофонде кукушек. Подобным же образом птицы-хозяева, обладающие достаточно острым зрением, чтобы обнаружить любое самое незначительное упущение в мимикрии яиц кукушек, – это именно те птицы, которые вносят наибольший вклад в генофонд собственного вида. Так они передают свои зоркие и скептические глаза следующему поколению. Это служит хорошим примером того, как естественный отбор может обострить активную дискриминацию, направленную в данном случае против другого вида, представители которого изо всех сил стараются преодолеть эту дискриминацию.

Вернемся теперь к сопоставлению той “оценки” степени родства с другими членами своей группы, которую дает само животное, с оценкой, сделанной опытным полевым натуралистом. Брайан Бертрам много лет посвятил изучению образа жизни львов в национальном парке Серенгети. На основании имеющихся у него данных о биологии размножения львов он оценил среднюю степень родства между индивидуумами, входящими в состав прайда. Его данные сводятся к следующему. Типичный прайд состоит из семи взрослых самок – наиболее постоянных членов прайда – и двух взрослых самцов, которые бродяжничают. Примерно половина самок приносит котят в одни и те же сроки и выращивает их совместно, так что определить, кому именно принадлежит данный детеныш, затруднительно. Самка, как правило, приносит трех львят. Отцовские обязанности обычно равномерно распределяются между взрослыми самцами, входящими в прайд. Молодые самки остаются в прайде, заменяя старых, которые умирают или уходят. Молодых самцов изгоняют из прайда довольно рано. Достигнув зрелости, они бродят небольшими группами или парами, прибиваясь то к одной, то к другой стае, но, как правило, в родной прайд не возвращаются.

На основании этих и других фактов и допущений удается вычислить среднюю оценку степени родства между двумя индивидуумами из типичного львиного прайда. Бертрам считает, что она равна 0,22 для двух случайно взятых самцов и 0,15 – для таких же самок. Иными словами, степень родства между самцами данного прайда в среднем чуть меньше, чем между единокровными или единоутробными братьями, а между самками – несколько меньше, чем между двоюродными сестрами.

Разумеется, любые два индивидуума могут оказаться родными братьями, но Бертрам не располагал возможностями для выявления этого, и можно смело утверждать, что львам это также неизвестно. Вместе с тем средние оценки, полученные Бертрамом, в некотором смысле доступны и самим львам. Если эти оценки действительно типичны для среднего прайда, то в таком случае любой ген, предрасполагающий самцов вести себя по отношению к другим самцам так, как если бы они были почти полубратьями, должен иметь положительное значение для выживания. Любой ген, который зашел бы слишком далеко, заставляя самцов вести себя по отношению друг к другу так, как подобает скорее родным братьям, в среднем был бы “оштрафован”, как и ген, определяющий недостаточно дружеские отношения, как, например, между троюродными братьями. Если обстоятельства жизни львов таковы, как их описывает Бертрам, и, что столь же важно, если они были такими на протяжении многих поколений, можно ожидать, что естественный отбор благоприятствовал уровню альтруизма, соответствующему средней степени родства в типичном прайде. Именно это я имел в виду, когда говорил, что оценки родства, сделанные животным и опытным натуралистом, могут оказаться довольно близкими[38].

Итак, мы приходим к выводу, что “подлинное” родство, возможно, играет меньшую роль в эволюции альтруизма, чем самая точная оценка родства, на которую способны животные. Этот факт, вероятно, может послужить ключом к пониманию того, почему родительская забота о потомстве чаще встречается в природе и гораздо более самоотверженна, чем забота братьев и сестер друг о друге, а также того, почему животные могут ценить себя выше, чем даже нескольких братьев. То, что я хочу сказать, сводится к следующему: помимо коэффициента родства, мы должны учитывать нечто вроде индекса “уверенности”. Несмотря на то, что генетическая близость между родителями и детьми не теснее, чем между братьями и сестрами, уверенность в ней больше. Обычно человек гораздо более уверен в том, что сын или дочь – это действительно его дети, чем в том, что его брат в самом деле приходится ему братом. И еще больше он уверен в том, кем является он сам!

Мы уже рассказали о жуликах среди кайр, а в последующих главах еще вернемся к вопросу о лгунах, жуликах и эксплуататорах. В мире, где постоянно находятся индивидуумы, которые ищут случая использовать альтруизм, возникший в результате кин-отбора, в собственных интересах, каждая машина выживания должна установить, кому она может верить, в ком она может быть действительно уверена. Если B – мой младший брат, то я должен заботиться о нем вполовину меньше, чем забочусь о себе, и совершенно так же, как я забочусь о собственном ребенке. Но могу ли я быть уверен в нем так же, как я уверен в собственном ребенке? Откуда я знаю, что это мой младший брат?

Если C – мой идентичный близнец, я должен заботиться о нем вдвое больше, чем я забочусь о любом из собственных детей. В сущности, я должен ценить его жизнь не меньше, чем свою собственную[39]. Но могу ли я быть уверенным, что он действительно мой близнец? Конечно, он похож на меня, но ведь может случиться, что мы просто несем одинаковые гены, детерминирующие черты лица. Нет, я не отдам за него жизнь, потому что хотя и возможно, что он содержит 100 % моих генов, мне совершенно точно известно, что я несу 100 % своих генов, а поэтому представляю для себя большую ценность, чем он. Я – тот единственный индивидуум, в котором любой из моих эгоистичных генов может быть совершенно уверен. И хотя в идеале ген, определяющий индивидуальный эгоизм, может быть вытеснен геном-соперником, определяющим альтруистичное спасение по крайней мере одного идентичного близнеца, двух детей или братьев или не менее четырех внуков и так далее, первый ген обладает таким огромным преимуществом, как уверенность в индивидуальной идентичности. Его соперник – ген альтруизма по отношению к кровным родственникам рискует допускать в отношении идентичности случайные ошибки либо попадаться в ловушки, намеренно подстроенные обманщиками и паразитами. Поэтому нам следует ожидать, что индивидуальный эгоизм распространен в природе гораздо шире, чем можно было бы предсказать на основании одного лишь генетического родства.

У многих видов мать может быть более уверена в своих потомках, чем отец. Мать откладывает видимое глазом, осязаемое яйцо или же вынашивает детеныша. У нее прекрасные шансы знать наверное носителей ее собственных генов. Бедный отец гораздо меньше застрахован от обмана. Следует ожидать поэтому, что отцы будут прилагать меньше усилий, чем матери, в заботе о потомках. В главе 9 мы увидим, что есть и другие причины ожидать этого. Точно так же бабушки с материнской стороны могут быть гораздо более уверены в своих внуках, чем бабушки со стороны отца, и можно ожидать, что они будут проявлять больше альтруизма, чем последние. Это объясняется тем, что они могут быть уверены во внуках, рожденных их дочерьми, тогда как сыновья могут оказаться рогоносцами. Деды с материнской стороны уверены в своих внуках совершенно в такой же степени, как бабушки с отцовской стороны, потому что оба они могут испытывать уверенность в отношении одного поколения и неуверенность в отношении другого. Точно так же дядья с материнской стороны должны быть более заинтересованы в благополучии племянников и племянниц, чем дядья с отцовской стороны, и в общем должны быть столь же альтруистичны, как и тетки. В самом деле: в обществе, в котором супружеская неверность широко распространена, дядья с материнской стороны должны быть более альтруистичны, чем “отцы”, поскольку у них больше оснований быть уверенными в своем родстве с ребенком. Они знают, что мать ребенка уж по крайней мере их единоутробная сестра. “Законный” же отец не знает ничего. Я не располагаю данными по этому поводу, но высказываю эти соображения в надежде, что такие данные могут быть у кого-то другого или же кто-то займется их поисками. В частности, интересные сведения могут нам сообщить социальные антропологи[40].

Тот факт, что родительский альтруизм гораздо более обычен, чем братский, представляется разумным объяснять с точки зрения “проблемы идентификации”. Однако при этом не получает объяснения сама асимметрия взаимоотношений родители-дети. Родители больше заботятся о детях, чем дети о родителях, хотя генетические взаимосвязи симметричны и уверенность в степени родства одинаково велика в обоих направлениях. Одна из причин состоит в том, что родители чисто практически имеют больше возможностей помогать детям, поскольку они старше и обладают большим жизненным опытом. Даже если ребенок захотел бы кормить своих родителей, у него нет для этого материальных возможностей. Во взаимоотношениях родители-дети есть и другая асимметрия, отсутствующая во взаимоотношениях братья-сестры. Дети всегда моложе своих родителей. Это часто, хотя и не всегда, означает, что ожидаемая продолжительность жизни у них больше. Как я уже подчеркивал, ожидаемая продолжительность жизни – очень важная переменная, которую в этом лучшем из миров животные должны учитывать в своих “вычислениях”, когда они “решают”, стоит им или нет проявлять альтруизм. Если для данного вида средняя ожидаемая продолжительность жизни у детей выше, чем у родителей, то любой ген, детерминирующий альтруизм детей, оказывается в невыгодном положении. Он будет детерминировать альтруистичное самопожертвование, направленное на благо индивидуумов, которые ближе к смерти от старости, чем сам альтруист. В отличие от этого ген родительского альтруизма получит при этом преимущество, поскольку это касается ожидаемой продолжительности жизни.

Иногда говорят, что кин-отбор прекрасен в теории, однако реальные примеры его действия очень немногочисленны. Такое мнение может высказывать лишь тот, кто не понимает, в чем состоит смысл кин-отбора. На самом деле все примеры заботы родителей о потомстве и его защиты, а также связанные с этим органы (молочные железы, сумки кенгуру и так далее) – это примеры действия кин-отбора в природе. Критики кин-отбора, конечно, знакомы с широко распространенной в природе заботой родителей о потомстве, но они не могут понять, что эта забота – такой же пример кин-отбора, как проявление альтруизма братья-сестры. Когда эти критики требуют привести примеры, они имеют в виду, что это должны быть примеры, не относящиеся к заботе о потомстве, а таких примеров действительно немного. Я выдвинул ряд возможных причин этого. Я мог бы привести множество примеров альтруизма братья-сестры. Но я не хочу этого делать, так как это подкрепило бы ошибочное представление (которое, как мы видели, поддерживает Уилсон), что кин-отбор касается именно взаимоотношений иного типа, нежели взаимоотношения родители-дети.

Причины возникновения этой ошибки в значительной степени исторические. Эволюционное преимущество, которое дает забота о потомстве, столь очевидно, что нам не надо было дожидаться, пока Гамильтон укажет нам на него. Это было понятно со времен Дарвина. Когда Гамильтон продемонстрировал генетическую равноценность других взаимоотношений и их эволюционное значение, он, естественно, делал упор на эти другие взаимоотношения. В частности, он приводил в качестве примеров таких общественных насекомых, как муравьи и пчелы, у которых особенно важную роль играют отношения сестра-сестра, как мы увидим в одной из следующих глав. Я даже слышал от некоторых людей, что, как им казалось, теория Гамильтона относится только к общественным насекомым!

Если кто-то не хочет соглашаться с тем, что забота о потомстве представляет собой пример кин-отбора в действии, то на него ложится бремя создания такой общей теории естественного отбора, которая предсказывала бы родительский альтруизм, но при этом не предсказывала бы альтруизм между родственниками по боковой линии. Я думаю, что это ему не удастся.

 

 

Глава 7

Планирование семьи

Нетрудно понять, почему некоторые ученые хотят отделить родительскую заботу от других видов альтруизма, создаваемого кин-отбором. Забота о потомстве воспринимается как составная часть размножения, тогда как альтруизм, проявляемый, например, в отношении племянника, с размножением не связан. Я полагаю, что между этими двумя видами альтруизма действительно существует важное различие, однако это совсем иное различие, нежели принято считать. Обычно размножение и заботу о потомстве отделяют от других видов альтруизма. Мне же хотелось бы проводить различие между рождением на свет новых индивидуумов, с одной стороны, и заботой об уже существующих индивидуумах – с другой. Я называю эти два вида активности деторождением и заботой о детенышах. Данной индивидуальной машине выживания приходится принимать решения двух разных типов: решение о заботе и решение о деторождении. Под решением я имею в виду неосознанный стратегический ход. Решение о заботе можно выразить следующим образом: “Вот детеныш. Я связан с ним такой-то степенью родства. Он погибнет с такой-то вероятностью, если я не буду его кормить. Стоит ли мне кормить его?” А решение о деторождении звучало бы так: “Стану ли я предпринимать шаги, необходимые для того, чтобы произвести на свет новый индивидуум, буду ли я размножаться?” До некоторой степени забота и деторождение неизбежно должны конкурировать между собой за время и другие ресурсы данного индивидуума. Он оказывается перед необходимостью выбора: “Стоит ли мне заботиться об этом детеныше – или лучше родить нового?”

В зависимости от особенностей экологии конкретного вида эволюционно стабильными могут оказаться различные сочетания стратегий заботы и деторождения. Единственная стратегия, которая не может быть эволюционно стабильной, – стратегия заботы в чистом виде. Если бы все индивидуумы целиком посвящали себя заботе об уже существующих детенышах и совершенно не производили на свет новых, популяцию быстро наводнили бы мутантные индивидуумы, специализированные к заботе о потомстве. Забота может быть эволюционно стабильной только в том случае, если она составляет часть какой-то смешанной стратегии – хоть какое-то деторождение должно происходить непременно.

Для тех животных, с которыми мы лучше всего знакомы, то есть для млекопитающих и птиц, обычно характерна сильно выраженная забота о потомстве. Решение о рождении нового детеныша обычно сопровождается решением заботиться о нем. Именно потому, что рождение детеныша и забота о нем так часто неразрывно связаны между собой, люди сбились с толку. Однако, как мы видели, с точки зрения эгоистичного гена нет принципиальной разницы в заботе о маленьком брате или о собственном младенце. Оба младенца связаны с вами одинаково тесными родственными узами. Если вам необходимо выбрать, кормить одного или другого, с генетической точки зрения нет никаких причин, по которым вы должны были бы выбрать собственного сына. Однако при этом вы, по определению, не можете родить своего брата. Вы можете лишь заботиться о нем, после того как кто-то другой произвел его на свет. В главе 6 мы говорили о том, как в идеале индивидуальные машины выживания должны решать, следует ли им проявлять альтруизм к другим индивидуумам, которые уже существуют на свете. В этой главе мы рассмотрим, как они должны решать, следует ли им производить на свет новых индивидов.

Именно это и послужило главным поводом к спору о “групповом отборе”, о котором я упоминал в главе 1. Спор возник потому, что Веро К. Уинн-Эдвардс, на ком лежит главная ответственность за распространение идеи группового отбора, сделал это в контексте теории “регуляции численности популяции”[41]. Он полагал, что отдельные животные намеренно и из альтруистичных побуждений снижают свою плодовитость на благо группы.

Эта гипотеза очень привлекательна, поскольку она так хорошо соответствует тому, что следовало бы сделать отдельным людям. У человечества слишком много детей. Численность популяции зависит от четырех факторов: рождаемости, смертности, иммиграции и эмиграции. Если говорить о населении земного шара в целом, иммиграцию и эмиграцию можно отбросить. Остаются смертность и рождаемость. До тех пор, пока среднее число доживших до половой зрелости детей на одну супружескую пару больше двух, число рождающихся младенцев из года в год будет увеличиваться со все возрастающей скоростью. В каждом поколении данная популяция возрастает не на какую-то определенную величину, а на нечто вроде фиксированной доли численности, которой она уже достигла. Поскольку сама эта численность все время возрастает, возрастает и величина прироста. Если подобный рост будет продолжаться бесконтрольно, численность населения удивительно быстро достигнет астрономических величин.

Между прочим, даже те, кого беспокоят проблемы народонаселения, не всегда понимают, что рост его численности зависит от того, в каком возрасте люди заводят детей, а также от числа этих детей. Численность популяции обычно возрастает на известную долю за поколение, и отсюда следует, что, увеличив промежуток между поколениями, можно снизить скорость роста численности за год. Лозунг, призывающий “остановиться на двоих”, можно было бы с равным успехом заменить лозунгом: “Начинайте в тридцать лет!” Однако в любом случае ускорение темпов роста народонаселения вызывает серьезную тревогу.

Всем нам, вероятно, приходилось видеть примеры ошеломляющих выкладок, с помощью которых можно довести все это до сознания людей. Так, численность населения Латинской Америки в настоящее время приближается к тремстам миллионам, и уже сейчас многие люди там недоедают. Если, однако, население будет продолжать расти с нынешней скоростью, менее чем через пятьсот лет оно достигнет уровня, при котором люди, стоя впритык друг к другу, покроют плотным “ковром” весь континент. Так будет даже в том случае, если все мы станем очень тощими, что вполне реально. Через тысячу лет, считая от настоящего момента, людям придется стоять на плечах друг у друга, образуя слой толщиной в миллион с лишним человек. Через две тысячи лет гора людей, движущаяся во внеземном пространстве со скоростью света, достигла бы края известной нам Вселенной.

Вы, разумеется, поняли, что это чисто гипотетические расчеты. На самом деле ничего такого не произойдет по ряду вполне практических причин. Названия некоторых из этих причин – голод, чума и война, или, если нам повезет, – регуляция рождаемости. Бесполезно полагаться на успехи сельскохозяйственной науки – на всякие там “зеленые революции” и тому подобное. Увеличение производства продуктов питания позволило бы несколько облегчить положение, однако можно математически доказать, что такое облегчение было бы временным. В самом деле, подобно успехам медицины, которые ускорили кризис, достижения в сельском хозяйстве вполне могут усугубить проблему, повысив скорость роста численности населения. Из всего этого неизбежно вытекает простая истина: нерегулируемая рождаемость неминуемо повлечет за собой ужасное повышение смертности, если только не начнется массовое переселение в космос на ракетах, отрывающихся от Земли с частотой нескольких миллионов в секунду. Трудно поверить, что эту простую истину не понимают лидеры, запрещающие своим сторонникам пользоваться эффективными противозачаточными средствами. Они отдают предпочтение “естественным” способам ограничения народонаселения – и именно к такому способу они и придут. Название ему – голод.

Однако, конечно, беспокойство, которое вызывают подобные долгосрочные прогнозы, связано с тревогой за будущую судьбу нашего вида как целого. Люди (некоторые из них) способны предвидеть гибельные последствия перенаселенности. В основе этой книги лежит допущение, что поведение машин выживания в общем направляется эгоистичными генами, которые безусловно не способны ни заглядывать в будущее, ни заботиться о благополучии вида в целом. Именно в этом месте Уинн-Эдвардс расстается с ортодоксальными теоретиками-эволюционистами. Он полагает, что существует способ, делающий возможной эволюцию подлинно альтруистичной регуляции рождаемости.

Ни в работах Уинн-Эдвардса, ни в популяризирующей его взгляды книге Роберта Ардри не уделяется должного внимания множеству общеизвестных фактов, которые никто не оспаривает. Совершенно очевидно, что скорость роста численности природных популяций животных никогда не достигает тех астрономических величин, на которые они теоретически способны. Иногда популяции диких животных остаются довольно стабильными, то есть рождаемость и смертность примерно компенсируют друг друга. Во многих случаях знаменитым примером служат лемминги – в популяциях наблюдаются резкие колебания, при которых взрывы численности чередуются со спадами и почти полным вымиранием. Иногда в каком-либо регионе популяция леммингов полностью вымирает. В других случаях (например, у красной рыси) наблюдаются периодические колебания численности (оценки сделаны на основании числа шкурок, сдававшихся на протяжении ряда лет скупщикам Компании Гудзонова залива). Единственное, чего не происходит с популяциями животных, – непрерывного роста численности.

Дикие животные почти никогда не гибнут от старости: голод, болезни или хищники одолевают их задолго до того, как они становятся действительно дряхлыми. До недавнего времени это относилось и к человеку. Большинство животных умирает в раннем возрасте, многие – на эмбриональных стадиях развития. Голод и другие причины гибели – основные факторы, препятствующие безграничному росту численности популяций животных. Однако, как мы видим на примере собственного вида, нет такой причины, которая делала бы это неизбежным. Если бы только животные регулировали свою рождаемость, голода могло бы никогда не быть. По тезису Уинн-Эдвардса именно так они и поступают. Но даже в этом у нас меньше разногласий, чем можно было бы подумать, читая его книгу. Приверженцы теории эгоистичного гена охотно согласятся с тем, что животные в самом деле регулируют свою рождаемость. У каждого данного вида величина кладки или помета довольно постоянна: ни у одного вида не бывает бесконечного числа потомков. Разногласия связаны не с тем, регулируется ли рождаемость. Они возникают по вопросу о том, почему она регулируется: какой процесс естественного отбора обусловил планирование семьи? Короче говоря, споры ведутся вокруг того, альтруистична ли регуляция рождаемости, то есть совершается ли она на благо вида, или же она эгоистична, то есть направлена на благо индивидуума, осуществляющего размножение. Рассмотрим их по очереди.

Уинн-Эдвардс полагал, что индивидуумы имеют меньше детей, чем способны иметь, и делают это для блага группы в целом. Он признает, что нормальный естественный отбор вряд ли мог бы обеспечить эволюцию подобного альтруизма: естественный отбор, благоприятствующий скоростям размножения, которые были бы ниже средней, представляется на первый взгляд внутренне противоречивым. Поэтому он призвал на помощь групповой отбор (см. главу 1). По его мнению, вымирание групп, отдельные члены которых сдерживают собственную скорость размножения, менее вероятно, чем вымирание групп-соперников, отдельные члены которых размножаются так быстро, что создается опасность истощения пищевых ресурсов. В результате земной шар населяют группы, для которых характерно умеренное размножение. Индивидуальное самоограничение в смысле размножения, о котором говорит Уинн-Эдвардс, в общем смысле можно приравнять к регуляции размножения, но он идет дальше и в сущности доходит до грандиозной концепции, рассматривающей всю жизнь сообщества как механизм регуляции численности популяции. Например, у многих видов животных две главные особенности жизни сообществ – территориальность и иерархическая структура, упоминавшиеся в главе 5.

Многие животные тратят немало времени и энергии на защиту определенного участка земли или другого местообитания, которое биологи называют территорией. Это явление широко распространено в царстве животных, причем не только у птиц, млекопитающих и рыб, но у насекомых и даже у актиний. Территория может представлять собой обширный участок леса, служащий главным местом добывания пищи для размножающейся пары, как у дроздов. Или же, как у серебристой чайки, это может быть небольшой участок, где нет пищи, но в центре которого находится гнездо. По мнению Уинн-Эдвардса, животные, сражающиеся за свою территорию, добиваются не какого-то реального выигрыша в виде кусочка пищи, а некоей символической награды. Во многих случаях самки отказываются спариваться с самцами, не обладающими территорией. Действительно, нередко случается, что самка, брачный партнер которой оказался побежденным, а его территория завоеванной, быстро переключается на победителя. Даже у моногамных видов, для которых, казалось бы, характерна верность, самка, быть может, вступает в брак с принадлежащей самцу территорией, а не с ним самим.

Если популяция становится слишком многочисленной, некоторые индивидуумы остаются без территорий и, следовательно, не участвуют в размножении. Поэтому для Уинн-Эдвардса территория – это нечто вроде выигрышного билета или лицензии на размножение. Поскольку число доступных территорий конечно, как бы конечно и число “лицензий”. Индивидуумы могут драться за получение этих “лицензий”, однако общее число детенышей, возможное в данной популяции, ограничивается числом имеющихся территорий. В некоторых случаях, например у шотландской куропатки, индивидуумы, казалось бы, и в самом деле ограничивают свое размножение, потому что птицы, проигравшие в борьбе за территорию, не только не участвуют в размножении, но и, по-видимому, отказываются от борьбы за территорию. Создается впечатление, что все приняли правила игры: если к концу конкурентного сезона индивидуум не сумел добыть себе один из билетов, формально дающих право на размножение, он добровольно отказывается от размножения и в течение сезона размножения не угрожает безопасности счастливцев, с тем чтобы они могли заниматься обеспечением дальнейшего существования вида.

Аналогичным образом Уинн-Эдвардс интерпретирует иерархическую структуру популяций. Во многих группах животных, особенно содержащихся в неволе, но иногда и в природных условиях, индивидуумы научаются распознавать друг друга и знают, когда они могут победить в драке, а кто обычно побеждает их самих. Как мы видели в главе 5, они склонны сразу сдаться индивидуумам, которые, как они “знают”, по всей вероятности, одолеют их. Благодаря такому поведению исследователи получают возможность изучать иерархическую структуру, или “очередность поклева” (названную так потому, что впервые она была описана для кур) – своего рода “табель о рангах” сообщества, в которой каждый индивидуум знает свое место и не помышляет ни о каком более высоком статусе. Конечно, иногда возникают настоящие серьезные драки и случается, что какие-то индивидуумы добиваются повышения и занимают более высокую ступень, чем их прежние непосредственные “начальники”. Но, как мы видели в главе 5, общий эффект автоматического подчинения со стороны индивидуумов низшего ранга сводится к тому, что на самом деле длительных схваток бывает мало и серьезные повреждения причиняются редко.

Многие считают, что это “хорошо”, исходя из каких-то не вполне ясных представлений о групповом отборе. Вероятность размножения для индивидуумов высокого ранга выше, чем для индивидуумов низкого ранга, потому, что самки отдают им предпочтение, либо потому, что они физически не подпускают самцов более низкого ранга к самкам. Уинн-Эдвардс рассматривает высокое положение в иерархии как еще один билет, дающий право на размножение. Вместо того чтобы сражаться за самок как таковых, самцы дерутся за статус в сообществе, а затем смиряются с тем, что раз они не сумели занять высокое положение в иерархической структуре, значит, они не заслуживают права на размножение. Они воздерживаются от прямых драк за обладание самкой, хотя даже и в такой ситуации могут попытаться получить более высокий статус, а поэтому можно сказать, что они косвенно конкурируют за самок. Однако, как и в случае территориального поведения, “добровольное признание” закона, согласно которому размножаться имеют право только самцы, имеющие высокий статус, приводит, по Уинн-Эдвардсу, к тому, что популяции растут не слишком быстро. Вместо того чтобы производить чересчур много потомков и на горьком опыте убеждаться в ошибочности такой практики, популяции используют формальные состязания за положение в иерархической структуре и территорию как средства, удерживающие их численность немного ниже того уровня, на котором голод сам забирает причитающуюся ему дань.

Быть может, самая поразительная из идей Уинн-Эдвардса – это идея об эпидейктическом поведении (термин, придуманный им самим). Многие животные проводят немало времени в больших стадах, стаях или косяках. Выдвигались различные более или менее разумные причины благоприятствования такому стадному поведению со стороны естественного отбора (они будут рассмотрены в главе 10). Уинн-Эдвардс придерживается совершенно иного мнения. Он полагает, что когда по вечерам скворцы собираются в большие стаи или облако роящихся комариков пляшет над воротами, они проводят “перепись” своей популяции. Поскольку Уинн-Эдвардс считает, что индивидуумы подчиняют интенсивность размножения интересам группы в целом и при высокой плотности популяции рождают меньше детенышей, логично предположить, что у них должен существовать какой-то способ измерения плотности популяции. Именно так: термостату в качестве составной части необходим термометр. Для Уинн-Эдвардса эпидейктическое поведение – это намеренное скапливание животных в одном месте, облегчающее оценку плотности популяции. Он представляет себе происходящий при этом процесс не как осознанную оценку численности, но как результат действия какого-то автоматического нервного или гормонального механизма, позволяющего данной популяции связать сенсорное восприятие ее плотности со своими репродуктивными системами.

Я попытался, хотя и коротко, отдать должное теории Уинн-Эдвардса. Если мне это удалось, она должна показаться вам на первый взгляд довольно убедительной. Я надеюсь, что чтение предыдущих глав создало у вас достаточный скепсис и вы можете заявить, что, несмотря на всю правдоподобность теории Уинн-Эдвардса, подтверждающие ее данные должны быть весомыми, в противном случае… Но данные, к сожалению, не очень хороши: это множество примеров, которые можно объяснить в соответствии с его теорией, но которые с равным успехом согласуются с более ортодоксальной теорией “эгоистичного гена”.

Главным создателем теории о роли эгоистичного гена в планировании семьи был великий эколог Дэвид Лэк, хотя он никогда не назвал бы ее так. Он изучал в основном величину кладок у диких птиц, но его теоретические построения и выводы имеют всеобщее значение. Для птиц каждого вида характерна определенная величина кладки. Например, олуши и чистики насиживают по одному яйцу, стрижи – по три, большие синицы – по шесть и более. Величина кладки может варьировать: некоторые стрижи откладывают одновременно лишь два яйца, большие синицы могут отложить двенадцать. Естественно считать, что число яиц, откладываемых и насиживаемых самкой, как и любой другой признак, по крайней мере частично находится под контролем генов. Иными словами, существует, вероятно, ген, определяющий откладку двух яиц, соперничающий с ним аллель откладки трех яиц, еще один аллель – четырех яиц и так далее, хотя на практике все обстоит, по-видимому, не так просто. В свете теории эгоистичного гена нам необходимо установить, какой из этих генов станет более многочисленным в генофонде. На первый взгляд может показаться, что ген откладки четырех яиц должен обладать преимуществом перед геном откладки трех или двух яиц. Однако после недолгих размышлений становится ясно, что простой аргумент “больше – значит лучше” не может быть верен. Он подсказывает, что пять яиц – лучше, чем четыре, десять – еще лучше, сто – даже еще лучше, а бесконечно большое число – лучше всего. Иными словами, он логически ведет к абсурду. Совершенно очевидно, что откладка большого числа яиц дает не только выигрыш, но и требует расходов. За увеличение числа откладываемых яиц неминуемо придется расплачиваться менее эффективной заботой о птенцах. Главная мысль Лэка заключается в том, что для любой данной природной ситуации существует, по-видимому, некая оптимальная величина кладки. В чем же он расходится с Уинн-Эдвардсом, когда отвечает на вопрос: “Оптимальная с чьей точки зрения?” Уинн-Эдвардс сказал бы: “Важный оптимум, к которому должны стремиться все индивидуумы, – оптимум для группы в целом”. А Лэк сказал бы: “Каждый эгоистичный индивидуум выбирает такую величину кладки, при которой он может довести число выращенных птенцов до максимума”. Если оптимальная величина кладки для стрижей равна трем, то по Лэку это означает, что любой индивидуум, пытающийся вырастить четырех птенцов, вероятно, вырастит меньше птенцов, чем его более осмотрительные соперники, которые стараются вырастить только трех. Очевидная причина здесь состоит в том, что при распределении пищи между четырьмя птенцами каждому достается так мало, что лишь немногие из них достигают зрелости. Это касается как изначального распределения желтка между четырьмя яйцами, так и распределения корма между птенцами после их вылупления. Поэтому по Лэку индивидуумы регулируют величину своей кладки по причинам, не имеющим отношения к альтруизму. Они не прибегают к регуляции рождаемости, чтобы избежать истощения ресурсов, которыми располагает данная группа. Они практикуют регуляцию рождаемости с тем, чтобы максимизировать число выживающих из фактически имеющихся детенышей – цель, прямо противоположная той, которая у нас обычно ассоциируется с регуляцией рождаемости.

Выращивание птенцов – занятие дорогостоящее. Мать должна вкладывать большое количество питательных веществ и энергии в производство яиц. Она затрачивает много усилий (возможно, с помощью своего брачного партнера) на постройку гнезда, в которое затем откладывает яйца, и на защиту яиц. Родители проводят несколько недель, терпеливо насиживая яйца. После вылупления птенцов родители доводят себя почти до смерти, безостановочно добывая для них пищу. Как мы уже видели, самец или самка большой синицы приносит в гнездо в среднем по кусочку пищи каждые тридцать секунд в течение всего светлого времени суток. Млекопитающие (в том числе мы) делают это несколько иначе, но основная идея, то есть высокая стоимость размножения, особенно для матери, относится и к ним. Очевидно, что если родительская особь пытается распределить свои ограниченные ресурсы пищи и заботы между слишком большим числом потомков, то в конечном счете ей удается вырастить меньше детенышей, чем если бы она поставила себе более скромную задачу. Она должна балансировать между деторождением и выращиванием. Число детенышей, которых может вырастить отдельная самка или брачная пара, определяется общим количеством пищи и других ресурсов, которые они способны мобилизовать. Естественный отбор, согласно теории Лэка, подгоняет исходную величину кладки (помета и тому подобного) таким образом, чтобы эти ограниченные ресурсы использовались с максимальной эффективностью.

Люди, у которых слишком много детей, оказываются в проигрыше не потому, что вымирает вся популяция, а лишь потому, что число выживающих детей у них ниже. Гены, определяющие рождение большого числа детей, просто не передаются следующему поколению в большом количестве, потому что из детей, несущих эти гены, немногие достигают зрелого возраста. У современного цивилизованного человека величина семьи уже не ограничена тем конечным количеством ресурсов, которое могут обеспечить родители. Если у супружеской пары оказалось больше детей, чем она может прокормить, на сцену выступает государство, то есть остальная часть популяции, и заботится о том, чтобы дети выжили и выросли здоровыми и крепкими. В сущности, нет решительно ничего, что мешало бы супружеской паре, не имеющей никаких материальных средств, производить на свет и растить ровно столько детей, сколько женщина в состоянии родить. Однако всеобщее благосостояние – вещь неестественная. В природе у родительских особей, рождающих больше детенышей, чем они могут выкормить, внуков бывает немного, и их гены не передаются следующим поколениям. В альтруистичном сдерживании рождаемости нет нужды, так как в природе не существует всеобщего благосостояния. Любой ген сверхснисходительности быстро настигает кара: детеныши, несущие этот ген, голодают. Поскольку мы, люди, не хотим возвращаться к прежним эгоистичным обычаям, когда дети в слишком больших семьях были обречены на голодную смерть, мы отменили семью в качестве единицы экономической самодостаточности, заменив ее государством. Однако на гарантированную помощь детям посягать нельзя.

Применение противозачаточных средств иногда критикуют как “противоестественное”. Да, это так – очень противоестественное. Беда в том, что противоестественно и всеобщее благосостояние. Я думаю, что большинство из нас считает всеобщее благосостояние в высшей степени желательным. Невозможно, однако, добиться противоестественного всеобщего благосостояния, если не пойти при этом также на противоестественную регуляцию рождаемости, так как это приведет к еще большим невзгодам, чем существующие в природе. Всеобщее благосостояние – быть может, величайшая альтруистичная система, которую когда-либо знал животный мир. Однако любая альтруистичная система внутренне нестабильна, поскольку она не защищена от злоупотреблений со стороны эгоистичных индивидуумов, готовых ее эксплуатировать. Люди, у которых детей больше, чем они способны вырастить, вероятно, в большинстве случаев слишком невежественны, чтобы их можно было обвинить в злонамеренной эксплуатации. Что же касается могущественных учреждений и деятелей, которые сознательно подстрекают к многодетности, то они, как мне кажется, далеко не столь наивны.

Возвращаясь к диким животным, можно перенести рассуждения Лэка о величине кладки на все другие примеры, используемые Уинн-Эдвардсом: территориальное поведение, иерархическую структуру и тому подобное. Возьмем, например, шотландскую куропатку, изучавшуюся им и его коллегами. Эти птицы питаются вереском. Они делят болота на участки, содержащие, по-видимому, больше пищи, чем нужно на самом деле владельцам участков. В начале лета куропатки борются за владение территорией, но спустя некоторое время побежденные, очевидно, смиряются со своим поражением и прекращают борьбу. Они становятся париями, не получающими собственных участков, и к концу сезона в большинстве случаев гибнут от голода. Размножаются только владельцы территорий. Между тем парии физически способны к размножению: если кого-нибудь из обладателей территорий подстрелят охотники, один из прежних парий быстро занимает его место и начинает размножаться. Уинн-Эдвардс, как мы видели, объясняет такое экстремальное поведение тем, что парии “смиряются” с постигшей их неудачей при попытке получить “лицензию” на размножение. Они не пытаются размножаться.

На первый взгляд этот пример нелегко объяснить с позиций теории эгоистичного гена. Почему парии не пытаются выгнать владельца с его участка, повторяя эти попытки вновь и вновь, пока не дойдут до полного изнеможения? Казалось бы, им нечего терять. Как мы видели, если какой-либо обладатель территории случайно гибнет, у парии появляется шанс занять его место, а следовательно, и размножаться. Если шансы на то, что таким образом парии удастся заполучить участок, выше, чем шансы на получение участка в результате драки, то в этом случае ему как эгоистичному индивидууму выгодно ждать чьей-нибудь гибели, а не идти на риск растраты своих небольших запасов энергии в тщетной борьбе. Для Уинн-Эдвардса роль этих парий в обеспечении благополучия группы состоит в том, чтобы, оставаясь на флангах в качестве запасных, быть готовыми занять место любого владельца территории, погибшего на главной стадии размножения группы. Теперь мы можем понять, что для них как для эгоистичных индивидуумов это может быть наилучшей стратегией. Как уже говорилось в главе 4, животных можно рассматривать как игроков. Наилучшая стратегия для игроков иногда состоит в том, чтобы ждать и надеяться, а не лезть напролом.

Точно так же многие другие примеры, когда животные, по-видимому, “смиряются” со своим неучастием в размножении, можно довольно легко объяснить с помощью теории эгоистичного гена. Общая форма объяснения всегда одинакова: наилучшая стратегия для данного индивидуума – обуздать себя в данный момент в надежде на лучшие шансы в будущем. Тюлень, не причиняющий вреда владельцам гаремов, поступает так не во имя благополучия данной группы. Он просто тянет время в ожидании благоприятного момента. Даже если такой момент никогда не настанет и ему не удастся произвести потомков, это могло произойти. И когда миллионы леммингов устремляются прочь от центра, где произошел взрыв численности популяции, они делают это вовсе не для того, чтобы сократить плотность в той области, которую они покидают! Все они – каждый эгоистичный индивидуум – ищут менее населенное место, в котором можно было бы жить. Лишь задним числом станет ясно, что каждому индивидууму, может быть, не удастся найти такое место и он погибнет. Однако оставаться на прежнем месте было бы еще хуже.

Доказано, что перенаселенность в некоторых случаях снижает рождаемость. Этот факт иногда приводят в качестве доказательства правильности теории Уинн-Эдвардса. В действительности дело обстоит совершенно иначе. Эти данные совместимы с теорией Уинн-Эдвардса в той же мере, в какой они совместимы с теорией эгоистичного гена. Например, в одном эксперименте мышей помещали в огороженный участок, где было вдоволь пищи, и позволяли свободно размножаться. Численность популяции возрастала до некоторого уровня, а затем стабилизировалась. Причиной такой стабилизации оказалось снижение плодовитости самок вследствие чрезмерной скученности: они приносили меньше детенышей. Об эффекте подобного рода неоднократно сообщалось. Его непосредственную причину часто называют “стрессом”, хотя это название само по себе не помогает объяснить суть дела. Во всяком случае, какой бы ни была непосредственная причина снижения рождаемости, остается необходимым дать этому эволюционное объяснение. Почему естественный отбор благоприятствует самкам, снижающим свою плодовитость при чрезмерной плотности популяции?

Ответ Уинн-Эдвардса ясен. Групповой отбор благоприятствует группам, в которых самки оценивают численность популяции и подгоняют рождаемость так, чтобы предотвратить чрезмерное использование ресурсов. В экспериментальных условиях недостатка пищи никогда не было, однако нельзя ожидать, что мыши понимают это. Они запрограммированы к жизни в природных условиях, а в этих условиях, по всей вероятности, перенаселенность служит надежным индикатором грядущего голода.

Что говорит теория эгоистичного гена? Почти то же, но с одним принципиальным отличием. Вы, вероятно, помните, что, согласно Лэку, животные должны иметь такое число детенышей, которое соответствовало бы оптимуму с их собственной эгоистичной точки зрения. Если число рожденных детенышей слишком мало или слишком велико, то в итоге выращенных детенышей будет меньше, чем в том случае, если бы оно точно соответствовало нужному числу. Однако это “нужное число”, вероятно, должно быть меньше в те годы, когда плотность популяции чрезмерно высока, чем в годы низкой плотности. Мы уже согласились с тем, что перенаселенность предвещает голод. Совершенно очевидно, что если самке предоставлены надежные данные, свидетельствующие о надвигающемся голоде, то снижение плодовитости соответствует ее собственным эгоистичным интересам. Соперники, не отреагировавшие таким образом на предупредительные сигналы, вырастят в конечном счете меньше потомков, даже если родят их больше. Поэтому мы приходим к почти такому же выводу, как Уинн-Эдвардс, но в результате эволюционных рассуждений совершенно иного рода.

Теория эгоистичного гена не сталкивается с затруднениями даже при объяснении “эпидейктических демонстраций”. Напомню о выдвинутой Уинн-Эдвардсом гипотезе, что животные намеренно собираются большими группами, чтобы всем индивидуумам было легче оценить численность популяции и отрегулировать в соответствии с этим рождаемость. Никаких прямых данных о существовании эпидейктических скоплений нет, но давайте допустим, что такие данные появятся. Окажется ли теория эгоистичного гена в затруднительном положении? Отнюдь.

Скворцы собираются в огромные стаи. Предположим, будет доказано не только то, что перенаселенность в течение зимы привела к снижению плодовитости следующей весной, но и что это было прямым следствием взаимного воздействия птиц друг на друга с помощью своих сигналов. Можно было бы экспериментально продемонстрировать, что индивидуумы, прослушавшие магнитофонную запись очень громких звуков, издававшихся плотным скоплением скворцов, отложили меньше яиц, чем те, которые прослушали запись криков, исходивших от более спокойной, менее многочисленной стаи. По определению, это должно было указывать на то, что крики скворцов представляют собой разновидность эпидейктической демонстрации. В рамках теории эгоистичного гена объяснение этих данных будет строиться примерно так же, как и в случае экспериментов на мышах.

Мы снова начнем с допущения, что гены, обусловливающие большую величину кладки, чем способны вырастить птицы, автоматически подвергаются “наказанию”: их число в генофонде сокращается. Перед самкой, эффективно откладывающей яйца, стоит задача предсказать оптимальную для себя как эгоистичного индивидуума величину кладки в предстоящем сезоне размножения. В главе 4 указывалось, что слово “предвидение” употребляется в данном контексте в особом смысле. Как же может самка птицы предвидеть оптимальную величину своей кладки? Какие переменные могут влиять на ее предвидение? Быть может, у многих птиц существует фиксированное предвидение, которое не меняется год от года. Так, в среднем оптимальная величина кладки для олуши – одно яйцо. В особенно “урожайные” на рыбу годы истинный оптимум для одной самки временно мог бы, вероятно, составлять два яйца. Если у олуши нет способа узнать заранее, будет ли данный год “урожайным”, то нельзя ожидать, что отдельные самки пойдут на риск напрасного расходования своих ресурсов на два яйца, поскольку это повредило бы их репродуктивному успеху за средний год.

Есть, однако, и такие виды (возможно, к ним относятся скворцы), для которых в принципе можно предсказать еще зимой, обеспечит ли следующая весна хороший урожай того или иного пищевого ресурса. У деревенских жителей имеется немало старых поговорок, свидетельствующих о том, что различные приметы, например обилие ягод на остролисте, надежно предсказывают погоду на следующую весну. Независимо от того, справедливо ли то или иное поверье, существование примет остается логически возможным, и теоретически хорошая “предсказательница” может менять из года в год величину своей кладки в соответствии со своими интересами. Независимо от того, надежны ягоды остролиста в качестве приметы или нет, в данном случае, как и в эксперименте с мышами, представляется весьма вероятным, что плотность популяции может служить хорошим индикатором. Самка скворца может в принципе знать, что когда будущей весной ей придется кормить птенцов, она будет конкурировать за корм с членами своего вида. Если она способна каким-то образом оценить зимой локальную плотность собственного вида, это поможет ей предвидеть степень тех трудностей, которые встанут перед ней весной при добывании пищи для птенцов. Если она решит, что плотность зимней популяции особенно велика, то с ее собственной эгоистичной точки зрения вполне разумным будет отложить относительно немного яиц. Ее оценка оптимальной величины собственной кладки, вероятно, понизится.

Но как только индивидуумы действительно сокращают величину кладки, основываясь на своей оценке плотности популяции, каждому отдельному эгоистичному индивидууму немедленно становится выгодным заставить соперников считать, что популяция велика, независимо от того, правда это или нет. Если скворцы оценивают численность популяции по силе шума, производимого в зимовочном скоплении, каждому индивидууму становится выгодно орать как можно громче, чтобы казалось, что кричат не одна, а целых две птицы. Мысль о том, что одно животное старается создать впечатление, будто их несколько, высказывал в ином контексте Джон Р. Кребс. Такое поведение получило название “красивого жеста” (beau geste) – по роману, в котором сходную тактику применяло подразделение французского Иностранного легиона. В нашем случае идея состоит в попытке заставить живущих по соседству скворцов уменьшить величину кладки до уровня ниже действительно оптимального. Если вы – скворец и вам удалось это сделать, то это соответствует вашим эгоистичным интересам, поскольку вы сокращаете число индивидуумов, не несущих ваших генов. Поэтому я делаю вывод, что идея Уинн-Эдвардса об эпидейктических демонстрациях может в действительности оказаться хорошей: возможно, он был прав с самого начала, а неверны были его доводы. Но в более общем смысле гипотеза, подобная гипотезе Лэка, достаточно сильна, чтобы дать объяснение в соответствии с концепцией эгоистичного гена всем фактам (если таковые появятся), которые, казалось бы, подтверждают теорию группового отбора.

Подведем итоги: индивидуальные родительские особи практикуют планирование семьи в том смысле, что они оптимизируют рождаемость, а не ограничивают ее во имя всеобщего блага. Они стараются максимизировать число своих выживающих детенышей, а это означает иметь не слишком много и не слишком мало детенышей. Гены, детерминирующие слишком большое число детенышей у одного индивидуума, не сохраняются в генофонде, потому что детеныши, несущие такие гены, обычно не доживают до зрелого возраста.

Итак, о количественных аспектах величины семьи сказано достаточно. Теперь мы переходим к столкновению интересов внутри семей. Во всех ли случаях матери выгодно относиться ко всем детенышам одинаково – или у нее могут быть любимчики? Должна ли семья функционировать как единое дружное целое – или же мы ожидаем встретить эгоизм и обман даже внутри семьи? Будут ли все члены данной семьи стремиться к одному и тому же оптимуму – или же они “расходятся во мнениях” относительно того, что есть оптимум? Это вопросы, на которые мы попытаемся ответить в следующей главе. Связанный с ними вопрос о том, возможно ли столкновение интересов супругов, отложим до главы 9.

 

 

Глава 8. Битва поколений

Давайте начнем с первого из вопросов, поставленных в конце предыдущей главы. Могут ли у матери быть любимчики, или она должна относиться одинаково альтруистично ко всем своим детям? Рискуя наскучить читателю, я тем не менее хочу опять повторить обычное предупреждение. Слово “любимчик” не содержит никаких субъективных, а слово “должна” – никаких моральных оттенков. Я рассматриваю мать как машину, запрограммированную на то, чтобы сделать все возможное для распространения копий сидящих в ней генов. Поскольку мы с вами – люди, понимающие, что означает иметь осознанные цели, мне удобно говорить о цели, используя это в качестве метафоры для объяснения поведения машин выживания.

Что должны означать на практике слова: у этой матери есть любимчик? Это должно означать, что имеющиеся у нее ресурсы она будет распределять среди своих детей неравномерно. Ресурсы, которыми располагает мать, весьма разнообразны. Наиболее очевидный ресурс – это пища в совокупности с усилиями, затрачиваемыми на ее добывание, поскольку они сами по себе во что-то ей обходятся. Другой ресурс – риск, которому подвергает себя мать, охраняя молодь от хищников, и который она может “расходовать” или нет. Энергия и время, затраченные на поддержание в порядке гнезда или убежища, их защиту от стихий и (у некоторых видов) время, отдаваемое обучению детенышей, – все это ценные ресурсы, которые мать может распределять между детенышами равномерно или неравномерно, “по своему усмотрению”.

Трудно придумать какую-то единую валюту и оценить с ее помощью все те ресурсы, которые тот или другой из родителей может вкладывать в детенышей. Точно так же, как люди используют деньги в качестве универсальной конвертируемой валюты, которую можно превратить в пищу, землю или рабочее время, нам необходимо найти валюту, чтобы измерять на ее основе ресурсы, вкладываемые индивидуальной машиной выживания в жизнь другого индивидуума, особенно в жизнь детеныша. Соблазнительно использовать для этого такую меру энергии, как калория. Некоторые экологи занимаются оценкой энергетических затрат в природе. Это, однако, не то, что нужно, поскольку энергию лишь приблизительно можно перевести в ту валюту, которая действительно представляет ценность: в “золотой стандарт” эволюции – выживание гена. Роберт Л. Триверс в 1972 году искусно разрешил эту проблему, выдвинув концепцию “родительского вклада” (хотя, читая между строчками, начинаешь понимать, что величайший биолог XX века – Рональд Э. Фишер – имел в виду практически то же самое, когда в 1930 году писал о “родительских расходах”)[42].

Родительский вклад (РВ) определяется как “любой вклад родителя в отдельного потомка, повышающий шансы данного потомка на выживание (следовательно, и на репродуктивный успех) за счет возможностей этого родителя вкладывать в другого потомка”. Прелесть триверсова родительского вклада в том, что он измеряется в единицах, очень близких к тем, которые действительно важны. Количество материнского молока, потребленного данным детенышем, измеряется не в литрах, не в калориях, а в единицах ущерба, нанесенного другим детенышам той же матери. Если, например, у матери два детеныша, X и Y, и X выпивает литр молока, главная часть РВ, которую составляет этот литр, измеряется в единицах возросшей вероятности гибели Y из-за того, что он не выпил этот литр молока. РВ измеряется в единицах снижения ожидаемой продолжительности жизни других детенышей, уже родившихся или могущих родиться в будущем.

Родительский вклад нельзя считать идеальной мерой, потому что в нем слишком сильно подчеркивается роль отца и матери по сравнению с другими генетическими связями. В идеале следовало бы ввести некую обобщенную меру вклада альтруизма. Можно сказать, что индивидуум A повышает шансы на выживание индивидуума B за счет способности A вносить вклады в других индивидуумов, в том числе в себя самого, причем все вклады взвешиваются в зависимости от соответствующего коэффициента родства. Таким образом, вклад данной матери в каждого отдельного детеныша в идеале следует измерять с учетом ущерба, наносимого при этом ожидаемой продолжительности жизни не только других детенышей, но также племянников, племянниц, ее самой и так далее. Во многих отношениях, однако, это лишь придирки, и предложенная Триверсом мера вполне пригодна для практического применения.

Каждый взрослый индивидуум располагает в течение жизни определенным общим количеством РВ, которое он может вкладывать в детенышей (а также в других родственников и в себя; для простоты мы рассматриваем только детенышей). РВ складывается из всей пищи, которую он может собрать или приготовить за всю свою жизнь, всех рисков, на которые он готов пойти, и всей энергии и усилий, которые он способен вложить в заботы о благополучии своих детенышей. Во что должна молодая самка, приступающая к взрослому существованию, вкладывать свои жизненные ресурсы? Какую ей следует выбрать инвестиционную политику? Как показывает теория Лэка, она не должна распределять свои вклады слишком мелкими долями между слишком большим числом детенышей. Она потеряла бы при этом слишком много генов, поскольку не смогла бы иметь достаточное число внуков. Однако, с другой стороны, она не должна отдавать все свои ресурсы слишком малому числу детенышей – балованному отродью. При этом ей будет гарантировано несколько внуков, но соперники, вложившие свои ресурсы в оптимальное число детенышей, получат в конечном счете больше внуков. На этом мы покончим с политикой равномерного распределения. Сейчас нас интересует вопрос о том, может ли мать получить какой-то выигрыш при неравномерном распределении вклада между детенышами, то есть должна ли она иметь любимчиков.

На этот вопрос следует ответить так: никаких генетических причин, по которым у матери должны быть любимчики, не существует. Ее коэффициент родства со всеми детьми одинаков (1/2). Оптимальная для нее стратегия состоит в том, чтобы равномерно распределить свой вклад между максимальным числом детенышей, которое она сможет выращивать до тех пор, пока они не станут способны иметь собственных детенышей. Но, как мы уже видели, на некоторых индивидуумов можно в этом смысле делать большую ставку, чем на других. У какого-нибудь слабого поросенка столько же материнских генов, что и у его более цветущих собратьев. Но ожидаемая продолжительность жизни у него ниже. К этому можно подойти и с другой стороны: ему необходимо получить от родителей больше, чем причитающаяся ему по справедливости доля их вклада, чтобы он мог сравняться со своими братьями. В зависимости от обстоятельств мать может выиграть, отказавшись кормить такого поросенка и распределив всю его долю РВ между его братьями и сестрами. Более того, может оказаться выгодным скормить этого поросенка его братьям и сестрам или же сожрать самой, то есть превратить в молоко. Свиноматки иногда пожирают своих поросят, но мне неизвестно, выбирают ли они при этом именно слабых.

Худосочные поросята – это частный пример. Мы способны сделать несколько более общих предсказаний относительно того, какое влияние может оказывать возраст детеныша на готовность матери вкладывать в него энергию и ресурсы. Если мать имеет возможность свободно выбирать, кому из двух детенышей спасать жизнь, зная при этом, что другой неминуемо погибнет, ей следует предпочесть того, кто старше. Это объясняется тем, что в случае его гибели она потеряет большую долю РВ, отпущенного ей на всю жизнь, чем если погибнет его младший брат. Вероятно, лучше выразить это несколько иначе: если она спасет младшего брата, ей придется еще вложить в него какие-то ценные ресурсы только для того, чтобы он достиг возраста старшего брата.

Вместе с тем, если перед матерью стоит не такой жесткий выбор – жизнь или смерть, – то, может быть, ей следовало бы отдать предпочтение младшему сыну. Представьте себе, например, что она должна решить, отдать ли конкретный кусочек пищи маленькому ребенку или подростку. Старший брат ведь скорее может раздобыть себе пищу без посторонней помощи. Поэтому, если она прекратит кормить его, он необязательно погибнет. А младший, который еще слишком мал, чтобы самому найти себе пищу, вероятно, погибнет, если мать отдаст пищу его старшему брату. И даже несмотря на то, что мать предпочла бы гибель младшего, а не старшего сына, она все же может отдать пищу младшему, потому что старший при всем при том вряд ли умрет. Вот почему самки млекопитающих в какой-то момент прекращают кормление детенышей молоком, а не продолжают кормить их в течение всей их жизни. В жизни детеныша наступает время, когда матери выгоднее лишить его своего вклада и использовать этот вклад для будущих потомков. Когда настает этот момент, она стремится отнять его от груди. Но мать, которая каким-то образом узнает, что имеющийся у нее в данный момент ребенок – последний, может продолжать вкладывать в него все свои ресурсы в течение всей оставшейся жизни и кормить его молоком, пока он не достигнет половой зрелости. Тем не менее она должна “взвесить”, не повысится ли ее выигрыш, если она будет вкладывать во внуков или же в племянников, поскольку, хотя их коэффициент родства с нею вдвое меньше, чем с родными детьми, их способность извлечь пользу из ее вклада может оказаться в два с лишним раза выше, чем аналогичная способность ее собственных детей.

Сейчас, вероятно, самое время поговорить о загадочном явлении, известном под названием менопаузы – довольно резком прекращении функций половой системы у женщины, наступающем в среднем возрасте. Возможно, что у наших диких предков это происходило не слишком часто, поскольку скорее всего немногие женщины доживали до среднего возраста. Тем не менее различие между резким изменением жизни у женщин и постепенным угасанием способности к размножению у мужчин наводит на мысль, что в менопаузе есть какая-то генетическая “преднамеренность”, что это некая “адаптация”. Объяснить это довольно трудно. На первый взгляд может показаться, что женщина должна продолжать рожать детей до самой смерти, даже если с возрастом выживание каждого отдельного ребенка становится все менее вероятным. Ведь, казалось бы, всегда имеет смысл попробовать? Не следует, однако, забывать, что она связана также родством со своими внуками, хотя и вдвое менее тесным.

По разным причинам, возможно имеющим отношение к теории старения Медавара, первобытные женщины с возрастом постепенно становились все менее способными выращивать детей. Поэтому ожидаемая продолжительность жизни ребенка, рожденного пожилой матерью, была меньше, чем ребенка молодой матери. Это означает, что если у женщины были сын и внук, родившиеся в один и тот же день, то ожидаемая продолжительность жизни для внука была больше, чем для сына.

Когда женщина достигала возраста, при котором средние шансы дожить до зрелости у каждого ее ребенка были в два с лишним раза ниже, чем у каждого ее внука того же возраста, любой ген, детерминирующий вклад ресурсов во внуков, а не в детей, получал преимущество. Хотя такой ген имеется только у одного из четырех внуков, а ген-соперник – у одного из двух детей, это перевешивается большей ожидаемой продолжительностью жизни внуков, и в генофонде преобладает ген “альтруизма к внукам”. Женщина не могла бы посвятить себя целиком внукам, если бы она продолжала иметь собственных детей. Следовательно, гены, детерминирующие утрату репродуктивной способности в среднем возрасте, становились все более многочисленными, поскольку они находились в телах внуков, выживание которых обеспечивалось альтруизмом бабушек.

Это одно из возможных объяснений эволюции менопаузы у женщин. Причина постепенного, а не внезапного угасания половой активности у мужчин состоит, вероятно, в том, что вклады мужчин в каждого отдельного ребенка вообще не так велики, как вклады женщин. Даже очень старому человеку, если он имеет возможность заводить детей от молодых женщин, всегда будет выгодно вкладывать в детей, а не во внуков.

До сих пор в этой и в предыдущей главах мы подходили ко всему с точки зрения родителей, в основном – матери. Мы задавали вопрос, могут ли родители иметь любимчиков, и вообще рассматривали наилучшую стратегию помещения вкладов для родителей. Быть может, однако, каждый ребенок способен оказать влияние на размеры вкладов в него родителей по сравнению с их вкладами в его братьев и сестер. Даже если родители не “хотят” выделять одного ребенка из всех других своих детей, может ли этот ребенок добиться особого внимания и заботы? Даст ли это ему какой-то выигрыш? А точнее, станут ли гены, определяющие эгоистичный захват “привилегий” среди детей, более многочисленными в генофонде, чем гены-соперники, определяющие удовлетворенность своей законной долей? Эта тема блестяще разобрана Триверсом в статье “Конфликт родители-потомки”, опубликованной в 1974 году.

Родственные связи матери со всеми ее детьми – уже родившимися и теми, которым еще предстоит появиться на свет, – одинаковы. Если исходить из одних лишь генетических оснований, то, как мы видели, у нее не должно быть любимчиков. Если она отдает кому-то предпочтение, это должно быть основано на различиях в ожидаемой продолжительности жизни, зависящих от возраста и других факторов. Мать, подобно любому другому индивидууму, связана “родством” с самой собой, которое вдвое сильнее, чем ее родство с каждым из своих детей. При прочих равных условиях это означает, что она должна эгоистично вкладывать большую часть своих ресурсов в себя, но условия-то не равны. Она принесет своим генам больше пользы, вкладывая значительную долю ресурсов в детей: они моложе ее и беспомощнее, а поэтому каждая единица вклада даст им гораздо больше, чем ей. Гены, детерминирующие предпочтительное вкладывание ресурсов в более беспомощных индивидуумов, а не в себя, могут преобладать в генофонде, несмотря на то, что у тех, кто от этого выигрывает, общей является лишь некоторая доля генов. Вот почему животные проявляют родительский альтруизм, да и вообще какой бы то ни было альтруизм, создаваемый кин-отбором.

Посмотрим теперь на это с точки зрения ребенка. Он связан с каждым из своих братьев или сестер точно такой же степенью родства, как и мать с каждым из них. Коэффициент родства во всех случаях равен 1/2. Поэтому он “хочет”, чтобы его мать вложила некоторую часть своих ресурсов в его братьев и сестер. На генетическом языке это означает, что он относится к ним так же альтруистично, как и его мать. Но опять-таки его родство к самому себе вдвое сильнее, чем к любому из своих братьев или сестер, и это заставляет его желать, чтобы мать вкладывала в него больше, чем в любого из них, при прочих равных условиях. В данном случае прочие условия действительно могут быть равны. Если вы и ваш брат одного возраста и если вы оба имеете возможность извлечь равное преимущество из литра материнского молока, вы “должны” постараться захватить больше, чем вам причитается по справедливости, а он должен постараться захватить больше, чем причитается ему. Приходилось ли вам слышать визг поросят, когда они устремляются, обгоняя друг друга, к свиноматке, которая ложится, собираясь их кормить? Или мальчишек, затеявших драку из-за последнего куска пирога? Эгоистичная жадность, по-видимому, очень характерна для поведения детей.

Но это еще не все. Если я конкурирую со своим братом за порцию пищи и если он гораздо моложе меня, так что он мог бы получить от этой пищи гораздо больше пользы, чем я, моим генам может оказаться выгодно, чтобы я уступил пищу ему. У старшего брата могут быть в точности те же самые основания для альтруизма, что и у матери или отца: в обоих случаях, как мы видели, коэффициент родства равен 1/2, и в обоих случаях младший индивидуум может лучше использовать данный ресурс, чем старший. Если я обладаю геном, детерминирующим отказ от пищи, то с вероятностью 50 % у моего младшего брата имеется тот же ген. Хотя вероятность наличия этого гена в моем собственном теле вдвое выше – она равна 100 %, – моя потребность в этой пище может быть менее чем вполовину столь настоятельной. Ребенок “должен” захватывать большую долю родительского вклада, чем ему причитается, но лишь до известного предела. Какого именно? Того, после которого чистый проигрыш его братьев и сестер (которые уже родились и которые потенциально должны родиться) равен удвоенному собственному выигрышу.

Рассмотрим вопрос о том, когда следует отнимать ребенка от груди. Мать хочет прекратить кормить ребенка грудью, чтобы подготовиться к появлению следующего ребенка. Однако ребенок, которого она кормит в данное время, не хочет, чтобы его отнимали от груди, так как молоко – удобная пища, не требующая никаких хлопот, а он не желает проявлять активность и трудиться, чтобы обеспечивать свое существование. Точнее, он согласен делать это впоследствии, но только тогда, когда сможет принести своим генам больше пользы, если освободит свою мать от забот о себе, дав ей возможность посвятить себя выращиванию его братьев и сестер. Чем старше ребенок, тем относительно меньший выигрыш он получает от каждого литра молока. Это объясняется тем, что он растет и литр молока составляет все меньшую долю его потребностей, а кроме того, он становится все более способным позаботиться о себе сам, если возникает необходимость. Поэтому, когда старший ребенок выпивает литр молока, который мог бы достаться маленькому, он забирает себе относительно больше РВ, чем когда этот литр выпивает младший. Ребенок становится старше, и наступает момент, когда матери выгодно перестать кормить его и начать вкладывать ресурсы в нового ребенка. Несколько позднее наступает время, когда ее старший ребенок также мог бы принести наибольший выигрыш своим генам, отказавшись сосать мать. Это тот момент, когда литр молока может принести больше пользы тем копиям его генов, которые, возможно, содержатся в телах его братьев или сестер, чем тем генам, которые точно содержатся в нем самом.

Это расхождение между матерью и ребенком является не абсолютным, а количественным. В данном случае оно касается сроков. Мать хочет кормить молоком имеющегося у нее в настоящее время ребенка до того момента, когда будет исчерпана причитающаяся ему “по справедливости” доля ресурсов с учетом его ожидаемой продолжительности жизни и количества уже вложенных в него ресурсов. Вплоть до этого момента никаких расхождений нет. Точно так же и мать, и ребенок сходятся во мнении, что кормление грудью надо прекратить после того, как проигрыш будущих детей окажется выше удвоенного выигрыша уже существующего ребенка. Однако между матерью и ребенком возникают разногласия в промежуточный период, когда ребенок, по мнению матери, получает больше, чем ему положено, но когда проигрыш других детей еще ниже его удвоенного выигрыша.

Сроки прекращения кормления – всего лишь один пример возможных поводов для разногласий между матерью и ребенком. Можно рассматривать их также как разногласия между индивидуумом и его еще не родившимися братьями и сестрами, сторону которых принимает мать. Конкуренция за вклад матери между соперничающими членами одного помета или выводка более непосредственна. И в этом случае мать при нормальных условиях будет стремиться к справедливости.

Многие виды птиц кормят своих птенцов в гнезде. Все птенцы раскрывают клювы и кричат, а родители бросают в раскрытый рот одного из них червяка или другой лакомый кусочек. Чем голоднее птенец, тем громче он кричит. Поэтому, если родители всякий раз дают пищу тому, кто кричит громче всех, все птенцы в конечном счете получают свою долю, потому что после того, как один из них получит достаточно пищи, он уже не кричит так громко. Во всяком случае, так должны были бы обстоять дела в этом лучшем из миров, если бы индивидуумы не мошенничали. Но в свете нашей концепции эгоистичного гена мы должны ожидать, что индивидуумы будут мошенничать – врать относительно того, насколько они голодны. Ситуация будет обостряться, причем, надо полагать, это окажется довольно бессмысленным, поскольку может показаться, что если все их громкие крики – обман, то такой уровень громкости превратится в норму и, в сущности, перестанет вводить в заблуждение. Однако процесс этот нельзя повернуть вспять, потому что любой птенец, который попытается сделать первый шаг, понизив громкость крика, тут же будет наказан: он получит меньше пищи и, по всей вероятности, будет голодать. Бесконечно усиливать громкость своих криков птенцы не могут по другим причинам. Они затрачивают при этом много энергии, но, что важнее, – рискуют привлечь внимание хищников.

Иногда, как уже говорилось, один из членов помета оказывается слабее, мельче остальных. Такие детеныши не в состоянии добиваться пищи наравне с другими и часто гибнут. Мы рассматривали условия, при которых матери может быть выгодна гибель слабого детеныша. Интуитивно можно предполагать, что сам он должен бороться до конца, но с теоретической точки зрения это необязательно. Как только такой детеныш становится слишком маленьким и слабым, так что его ожидаемая продолжительность жизни снижается до уровня, при котором извлекаемая им из родительского вклада польза составляет менее половины того, что потенциально могли бы извлечь из этого вклада другие детеныши, слабый должен с достоинством умереть. При этом он обеспечит своим генам максимальный выигрыш. Иными словами, ген, дающий инструкцию: “Тело! Если ты гораздо мельче, чем другие члены одного с тобой помета, откажись от борьбы и умри”, может добиться успеха в генофонде, потому что его шансы попасть в тело каждого спасенного брата или сестры равны 50 %, тогда как шансы выжить, находясь в теле слабосильного детеныша, в любом случае незначительны. В жизни каждого слабого детеныша есть момент, после которого пути назад уже нет. До наступления этого момента он должен продолжать борьбу, а затем сдаться и – что было бы лучше всего – позволить своим собратьям или родителям себя съесть.

При обсуждении теории Лэка о величине кладки я не упоминал об одной стратегии, разумной для матери, которая не может решить, какая величина кладки была бы оптимальной в нынешнем году. Она может отложить одно яйцо сверх того количества, которое, как она “думает”, было бы оптимальным. Тогда, если корма окажется в данном году больше, чем ожидалось, она вырастит на одного птенца больше. Если же нет, она может хотя бы уменьшить свои потери. Внимательно следя за тем, чтобы всегда кормить птенцов в определенной последовательности, скажем в порядке уменьшения их размеров, она старается, чтобы один из них, возможно низкорослый, быстро погиб. Поэтому на него затрачивается не слишком много пищи и все убытки ограничиваются первоначальным вкладом в яичный желток или его эквивалент. С точки зрения матери это может послужить объяснением явления слабосильных птенцов. Он как бы подстраховывает ставки матери. Аналогичная ситуация наблюдается у многих птиц.

Используя метафору об отдельном животном как о машине выживания, которая ведет себя так, как если бы ее “целью” было сохранение своих генов, мы можем говорить о конфликте между родителями и детьми, о битве поколений. Это весьма изощренная битва, в которой ни одна из сторон не брезгует никакими средствами. Ребенок не должен упускать ни одной возможности смошенничать. Он может притвориться, будто он голоднее, чем на самом деле, или моложе, или даже что ему угрожает большая опасность, чем в действительности. Он слишком мал и слаб, чтобы угрожать своим родителям физически, но пускает в ход все психологические средства, какими только располагает: врет, мошенничает, обманывает, использует все, что можно, в своих целях, вплоть до того, что начинает ухудшать положение своих родственников сильнее, чем это допускает коэффициент его генетического родства с ними. Со своей стороны, родители должны быть готовы к возможности мошенничества и обмана. Не поддаваться – казалось бы, несложная задача. Если родитель знает, что его ребенок способен соврать относительно того, насколько он голоден, он может всегда давать ему определенное количество пищи, и не более, даже если ребенок продолжает орать. Трудность здесь в том, что, быть может, ребенок не врет, а если он умрет из-за того, что его не кормили, то родители потеряют часть своих драгоценных генов. В природе птицы могут умереть, поголодав в течение всего нескольких часов.

Амоц Захави высказал предположение об особенно жестокой форме детского шантажа: детеныш кричит с намерением привлечь хищников к гнезду. Он “говорит”: “Лиса, лиса, приходи и забери меня”. Единственный способ заставить его замолчать – дать ему есть. Так птенец получает больше пищи, чем ему причитается по справедливости, но за счет некоторого риска для себя. Эта безжалостная тактика в принципе аналогична тактике террориста, угрожающего взорвать самолет, на борту которого он находится, если ему не дадут выкуп. Я отношусь скептически к тому, что такая тактика может играть какую-то роль в эволюции, и не потому, что она слишком жестокая, а потому, что вряд ли она могла бы оказаться выгодной шантажисту. Если хищник действительно появится, его потери будут слишком велики. В том случае, который рассматривает сам Захави, то есть в случае единственного птенца, это несомненно. Сколько бы мать ни успела вложить в него, он все равно будет ценить свою жизнь дороже, чем ее ценит мать, так как она несет только половину его генов. Кроме того, такая тактика не окупится, даже если шантажист находится в гнезде не один, а с группой других птенцов, подвергающихся опасности вместе с ним, поскольку каждый из них содержит его пятидесятипроцентную генетическую “ставку”, не говоря уже о стопроцентной “ставке” в нем самом. Я полагаю, что эта теория могла бы оправдать себя, если бы хищник всегда выхватывал из гнезда самого крупного птенца. В таком случае более мелкому птенцу было бы выгодно угрожать другим тем, что он призовет хищника, поскольку это не представляло бы серьезной опасности для него самого. Это все равно что приставить пистолет к голове родного брата, вместо того чтобы грозить, что застрелишься сам.

Более правдоподобно предположить, что тактика шантажа могла бы оказаться выгодной птенцу кукушки. Как известно, самки кукушки откладывают по одному яйцу в каждое из нескольких чужих гнезд, а затем предоставляют невольным приемным родителям, принадлежащим к совершенно другому виду, выращивать кукушонка. “Молочные” братья и сестры не содержат никаких генетических вкладов кукушонка. (У птенцов некоторых видов кукушки “молочных” братьев или сестер нет по какой-то неясной причине, которой мы еще займемся. В данный момент я исхожу из допущения, что мы имеем дела с одним из тех видов, у которых “молочные” братья и сестры сосуществуют с кукушонком.) Если кукушонок начнет орать достаточно громко, чтобы привлечь хищников, он может потерять жизнь, но приемная мать может потерять еще больше – скажем, четырех из своих птенцов. Поэтому ей было бы выгодно давать кукушонку больше пищи, чем ему положено, и это преимущество может перевесить риск, которому он себя подвергает.

Это один из тех случаев, когда разумнее перейти на респектабельный язык генов, с тем чтобы успокоить себя, что мы не слишком ушли в сторону с нашими субъективными метафорами. Каков на самом деле смысл гипотезы, предполагающей, что кукушата “шантажируют” приемных родителей, когда кричат: “Хищник, хищник, иди сюда и забери меня и всех моих братьев и сестер?” В терминах генов это означает следующее.

Гены, детерминирующие громкие крики, стали более многочисленными в генофонде кукушек, так как эти громкие крики повысили вероятность того, что приемные родители будут кормить кукушат. Причиной подобной реакции приемных родителей на крики кукушат было то, что гены, детерминирующие эту реакцию, распространились в генофонде вида, к которому принадлежат приемные родители. Распространение же этих генов было связано с тем, что отдельные приемные родители, не дававшие кукушатам дополнительной пищи, выращивали меньше собственных птенцов, чем те родители, которые давали дополнительное количество пищи своим кукушатам. Это происходило потому, что крики кукушат привлекали к их гнездам хищников. Хотя кукушечьи гены, носители которых не кричат, привлекая хищников, имеют меньше шансов закончить свой жизненный путь в желудке хищника, чем гены, детерминирующие крики, носители первых генов понесли больший ущерб, поскольку не получали дополнительной пищи. Поэтому в генофонде кукушек распространились гены, детерминирующие крикливость.

Сходная цепь генетических рассуждений, продолжающая изложенную выше более субъективную аргументацию, показала бы, что такой ген шантажа, возможно, мог бы распространиться в генофонде кукушки, но вряд ли он распространится в генофонде обыкновенного вида, во всяком случае не по той причине, что он привлекает хищников. Конечно, у обыкновенного вида гены, детерминирующие крики, могли бы, как мы уже видели, распространяться по другим причинам, и они случайно могли бы обладать проявляющимся иногда эффектом привлечения хищников. Однако в этом случае единственное селективное влияние хищничества могло быть направлено на то, чтобы эти крики становились тише. В гипотетическом примере с кукушками чистое влияние хищников, каким бы парадоксальным это ни показалось на первый взгляд, могло бы сводиться к усилению громкости криков.

Нет никаких данных – ни за, ни против – относительно того, что кукушки и другие гнездовые паразиты действительно прибегают к шантажу. Но жестокости им не занимать. Например, некоторые медоуказчики, подобно кукушкам, откладывают свои яйца в гнезда птиц других видов. У птенцов медоуказчиков острый, загнутый крючком клюв. Едва вылупившийся, еще слепой, голый и, в общем, беспомощный птенец наносит резаные и колотые раны “молочным” братьям и сестрам, забивая их насмерть: мертвые не претендуют на пищу. Обыкновенная кукушка достигает тех же результатов несколько иным путем. Период насиживания у нее короткий, так что птенец вылупляется раньше, чем птенцы хозяев гнезда. Как только кукушонок вылупился из яйца, он слепо и механически, но с разрушительной эффективностью выбрасывает все другие яйца из гнезда. Он подлезает под яйцо, взваливает его в ложбинку на спине, а затем медленно пятится к краю гнезда, удерживая яйцо между недоразвитыми крыльями, и сбрасывает его на землю. Он проделывает то же самое со всеми яйцами, после чего остается единственным обитателем гнезда – и единственным предметом заботы приемных родителей.

Один из самых замечательных фактов, о котором я узнал в прошлом году, был описан испанскими учеными Ф. Альваресом, Л. Ариасом де Рейна и X. Сегурой. Они изучали способность потенциальных приемных родителей – потенциальных жертв кукушек – выявлять незваных гостей: кукушечьи яйца или птенцов. В процессе своих экспериментов они подкладывали в сорочьи гнезда яйца и птенцов кукушки и для сравнения яйца и птенцов других видов, таких как ласточки. В одно из сорочьих гнезд они подложили птенца ласточки. На следующий день на земле под гнездом было обнаружено одно из яиц сороки. Оно не было разбито, так что его подобрали, снова положили в гнездо и стали наблюдать. Птенец ласточки действовал точно так же, как и птенец кукушки, то есть поместив яйцо на спину и удерживая его между крыльями, пятился к краю гнезда и сбрасывал яйцо.

Альварес и его коллеги, вероятно, поступили разумно, не пытаясь дать объяснение своему удивительному наблюдению. Как могло такое поведение возникнуть в генофонде ласточки в процессе эволюции? Оно должно соответствовать чему-то в нормальной жизни этих птиц. Птенцы ласточки обычно никогда не оказываются в гнезде сороки. Быть может, это поведение представляет собой некую антикукушечью адаптацию, возникшую в процессе эволюции. Благоприятствовал ли естественный отбор тактике контрнаступления в генофонде ласточки, то есть сохранению генов, детерминирующих борьбу с кукушкой с помощью ее же собственного оружия? Можно, по-видимому, считать установленным, что кукушки, как правило, не подкладывают свои яйца в гнезда ласточек. Может быть, именно поэтому. По этой теории в описанном эксперименте птенец выбрасывал сорочьи яйца, вероятно, потому, что они, так же как яйца кукушки, крупнее яиц ласточек. Но если птенцы ласточки могут отличить крупное яйцо от нормального яйца ласточки, наверное, мать также должна быть способна сделать это. Так почему же яйцо кукушки выбрасывает птенец, а не мать, которой это было бы гораздо легче? То же самое возражение вызывает теория, согласно которой удаление из гнезда испорченных яиц и всяких остатков – один из обычных элементов поведения птенцов ласточки. Но опять-таки эту задачу могла бы лучше выполнить – и выполняет – мать. То обстоятельство, что трудную и требующую навыка операцию по выбрасыванию яйца производит слабый и беспомощный птенец ласточки, тогда как взрослой ласточке сделать это было бы гораздо легче, приводит меня к заключению, что с ее точки зрения такой птенец только и способен на нечто гадкое.

Мне представляется вероятным, что истинное объяснение не имеет никакого отношения к кукушкам. Не может ли быть, каким бы ужасным ни казалось такое предположение, что птенцы ласточки проделывают то же самое друг с другом? Поскольку первенцу предстоит конкурировать за родительский вклад с еще невылупившимися братьями и сестрами, ему было бы выгодно начать жизнь с выкидывания одного из других яиц из гнезда.

В теории Лэка о величине кладки оптимум рассматривался с точки зрения самки. Допустим, что я – ласточка-мать и что с моей точки зрения оптимальная величина кладки равна пяти. Но если я – птенец ласточки, оптимальным вполне может быть и меньшее число яиц, при условии, что я вхожу в это число. Мать располагает определенным количеством родительского вклада, которое она “хочет” распределить равномерно между пятью птенцами. Однако каждому птенцу хочется получить больше положенной ему доли. В отличие от кукушонка, он не претендует на весь родительский вклад, потому что связан с остальными птенцами родством. Но он хочет получить больше, чем одну пятую. Он может завладеть одной четвертью, если просто выбросит из гнезда одно яйцо, и одной третью – если выбросит еще одно. В переводе на язык генов это означало бы, что ген братоубийства мог бы распространиться в генофонде, потому что он имеет стопроцентный шанс содержаться в теле братоубийцы и только пятидесятипроцентный – в теле его жертвы.

Главное возражение против этой теории состоит в том, что никто никогда, вероятно, не наблюдал этого дьявольского поведения. Я не могу предложить этому никакого убедительного объяснения. В разных частях земного шара обитают различные расы ласточек. Известно, что испанская раса отличается от, например, британской в определенных отношениях. Испанская не подвергалась такому интенсивному изучению, как британская, и поэтому можно предполагать, что братоубийство происходит, но остается незамеченным.

Я выдвигаю такую невероятную гипотезу, как братоубийство, потому что хочу высказать некое общее соображение: быть может, жестокое поведение кукушки – всего лишь крайнее проявление того, что может происходить в любой семье. Родные братья гораздо теснее связаны друг с другом, чем кукушонок со своими “молочными” братьями, но разница эта не качественная, а лишь количественная. Даже если мы не можем поверить, что в процессе эволюции оказалось возможным развитие прямого братоубийства, несомненно нетрудно было бы привести много примеров менее откровенного эгоизма, когда расходы для детеныша в форме потерь для его братьев и сестер перевешиваются более чем вдвое выигрышем для него самого. В таких случаях, как и в примере со сроками прекращения кормления, имеет место реальное столкновение интересов родителя и детеныша.

Кто скорее всего окажется победителем в этой битве поколений? Ричард Д. Александер написал интересную статью, в которой высказал мнение, что на этот вопрос можно дать общий ответ: родитель всегда побеждает[43]. Если это так, то вы зря потратили время на чтение настоящей главы. Если Александер прав, то из этого следует много интересного. Например, эволюция альтруистичного поведения стала возможной не потому, что она давала преимущество генам каждого индивидуума, а лишь потому, что она давала преимущество генам его родителей. Манипуляции родителей, пользуясь выражением Александера, становятся альтернативной причиной эволюции альтруистичного поведения, независимо от честного кин-отбора. Важно поэтому изучить ход рассуждений Александера и убедиться, что мы понимаем, в чем он неправ. На самом деле для этого следовало бы привлечь математический аппарат, однако в настоящей книге я стремился избегать его применения в явном виде.

Исходное генетическое положение Александера заключено в следующем отрывке (приводится в сокращенном виде): “Допустим, что какой-то детеныш… добивается неравномерного распределения предоставляемых родителями благ в свою пользу, снижая тем самым общую репродукцию матери. Некий ген, повышающий таким образом приспособленность данного индивидуума, когда он находится на ювенильной стадии развития, непременно понизит сильнее его приспособленность на взрослой стадии, потому что доля таких мутантных генов у потомков мутантного индивидуума увеличится”. Тот факт, что Александер рассматривает недавно мутировавший ген, не имеет существенного значения. Лучше представлять себе при этом какой-то редкий ген, унаследованный от одного из родителей. В специальном смысле “приспособленность” и означает успех размножения. Суть высказывания Александера состоит в следующем. Ген, под действием которого один детеныш забирает себе больше того, что ему положено, за счет общего вклада его родителей в размножение, может в самом деле повысить шансы этого детеныша на выживание. Но когда этот детеныш сам станет родителем, ему придется расплачиваться за это, потому что его собственные дети унаследуют тот же самый эгоистичный ген и это понизит его общий репродуктивный успех. Он пострадает от собственных козней. Поэтому такой ген не может добиться успеха и родители всегда будут выходить из конфликта победителями.

Такие рассуждения должны немедленно насторожить нас, потому что они исходят из допущения генетической асимметрии, которой на самом деле здесь нет. Александер пользуется словами “родитель” и “потомок” так, как если бы между ними существовало фундаментальное генетическое различие. Как мы видели, хотя между родителями и детьми имеются реальные различия, например родители старше, чем дети, и дети выходят из тел родителей, фундаментальной генетической асимметрии между ними нет. Коэффициент родства между ними составляет 1/2, как бы вы к этому ни подходили. Для иллюстрации своей мысли я повторю высказывание Александера, поменяв местами слова “родитель” и “детеныш” и изменив смысл некоторых слов на противоположный. “Допустим, что у родителя имеется ген, который обусловливает равномерное распределение родительских вкладов. Некий ген, повышающий таким образом приспособленность индивидуума, когда он выступает в роли родителя, не мог не понизить его приспособленность сильнее, когда он был детенышем”. Поэтому мы приходим к выводу, прямо противоположному заключению Александера: в любом конфликте родители-потомки победит потомок!

Совершенно очевидно, что здесь что-то не так. Обе точки зрения изложены слишком упрощенно. Цель моей переиначенной цитаты состоит не в том, чтобы доказать Александеру справедливость противоположной точки зрения, а просто в том, чтобы показать невозможность вести рассуждения подобного рода искусственно асимметричным способом. Как ход рассуждений Александера, так и моя переиначенная версия ошибочны, поскольку события рассматриваются в них с точки зрения индивидуума: у Александера это родитель, у меня – потомок. Я полагаю, что в такую ошибку впасть чрезвычайно легко при использовании специального термина “приспособленность” (fitness). Именно поэтому я избегаю этого слова в своей книге. На самом деле существует лишь одна единица, точка зрения которой имеет значение в эволюции, и эта единица – эгоистичный ген. Гены в телах молодых будут сохраняться отбором благодаря их способности перехитрить родительские тела, а гены в родительских телах сохраняются отбором благодаря их способности перехитрить молодые тела. Нет ничего парадоксального в том, что одни и те же гены последовательно находятся сначала в теле детеныша, а затем в родительском теле. Гены отбираются по своей способности наилучшим образом использовать имеющиеся в их распоряжении рычаги власти: они эксплуатируют свои практические возможности. Когда ген находится в теле ребенка, его практические возможности отличаются от тех, которыми он располагает, находясь в родительском теле. Поэтому его оптимальная тактика на двух стадиях жизненного цикла его тела будет различной. Нет оснований полагать, как это делает Александер, что оптимальный образ действий гена на более поздней стадии должен непременно отвергать более ранний.

Возражения против точки зрения Александера можно построить по-иному. Он молчаливо допускает наличие асимметрии между отношениями родители-дети, с одной стороны, и брат-сестра – с другой, что ошибочно. Вы должны помнить, что, согласно Триверсу, причина, почему эгоистичный ребенок, присваивая большую, чем положено, долю родительского вклада, ограничивается лишь этой долей, а не захватывает все, заключается в опасности потерять своих братьев и сестер, каждый из которых несет половину его генов. Но братья и сестры – это лишь одна категория родственников с коэффициентом родства, равным 1/2. Собственные будущие дети эгоистичного ребенка “дороги” ему не больше и не меньше, чем его братья и сестры. Поэтому при определении суммарной платы за то, что он взял себе большую долю ресурсов, чем ему положено, необходимо учитывать не только утраченных братьев и, сестер, но также утрату будущих собственных детей, обусловленную эгоизмом, проявляемым ими по отношению друг к другу. Положение Александера о том, что ювенильный эгоизм невыгоден, поскольку он передается собственным детям проявляющего такой эгоизм индивидуума и в далекой перспективе снижает его собственный репродуктивный успех, справедливо, но оно просто означает, что мы должны включить этот фактор в уравнение. Детенышу все еще выгодно оставаться эгоистичным, если его чистый выигрыш составляет по крайней мере половину чистого проигрыша для его близких родственников. Однако к числу близких родственников следует относить не только братьев и сестер, но и будущих собственных детей данного индивидуума. Индивидуум должен считать собственное благополучие вдвое более ценным для себя, чем благополучие своих будущих детей. Заключение Александера, что в рассматриваемом конфликте у родительской стороны имеется некое неотъемлемое преимущество, ошибочно.

Помимо этого основного генетического довода Александер располагает более практическими аргументами, вытекающими из неоспоримой асимметрии во взаимоотношениях родители-дети. Родитель выступает в них в роли активного партнера, несущего все тяготы по добыванию пищи и тому подобному, а поэтому обладающего правом “заказывать музыку”. Если родитель прекратит свои заботы, ребенок мало что сможет предпринять, так как он меньше и не в силах нанести ответный удар. Поэтому родитель имеет возможность навязывать свою волю, не считаясь с желаниями ребенка. Ошибочность этого аргумента не очевидна, поскольку в данном случае постулируемая асимметрия действительно существует. Родители в самом деле крупнее, сильнее и опытнее, чем дети. Все козыри явно в их руках. Однако и у деток имеется несколько тузов. Так, родителю важно знать, насколько голоден каждый из детенышей, чтобы с толком распределить пищу. Конечно, он может раздать ее всем поровну, но в этом лучшем из всех возможных миров это окажется менее эффективным, чем система, при которой тем, кто способен действительно использовать пищу лучше других, уделяется чуть больше. Система, при которой каждый детеныш сообщает родителям, насколько он голоден, была бы идеальной для них, и, как мы видели, в процессе эволюции такая система, по-видимому, действительно возникла. Но детеныши обладают прекрасными возможностями для обмана, потому что точно знают, насколько они голодны, тогда как родители могут лишь гадать, говорят им правду или нет. Родителям почти невозможно выявить мелкий обман, хотя крупную ложь они могут и обнаружить.

Родителям опять-таки выгодно знать, когда ребенок доволен жизнью, и ребенку было бы хорошо иметь возможность сообщать им об этом. Отбор мог благоприятствовать таким сигналам, как мурлыканье и улыбка, потому что они позволяют родителям узнавать, какие из их действий наиболее благотворны. Вид улыбающегося ребенка или издаваемые им звуки, напоминающие мурлыканье котенка, служат матери такой же наградой, как пища в желудке вознаграждает крысу, нашедшую правильный путь в лабиринте. Но как только ребенок обнаруживает, что милая улыбка или громкое мурлыканье вознаграждаются, он может начать использовать то или другое для того, чтобы манипулировать родителями и получать больше положенной ему доли родительского вклада.

 

Таким образом, общего ответа на вопрос о том, у кого больше шансов выиграть битву поколений, дать нельзя. В итоге должен найтись некий компромисс между идеальной ситуацией, к достижению которой стремятся дети, и ситуацией, идеальной для родителей. Это битва, сравнимая с битвой между кукушкой и приемным родителем, но, конечно, менее жестокая, поскольку у врагов есть некоторые общие интересы – они враждуют лишь до какого-то момента или в течение некоторых периодов. Однако многие тактики, применяемые кукушками, тактики обмана и эксплуатации, могут использоваться собственным детенышем данного родителя, хотя этот детеныш и не дойдет до такого крайнего эгоизма, которого можно ожидать от кукушки.

Эта глава, а также следующая, в которой рассматривается конфликт между брачными партнерами, может показаться ужасно циничной и навести на тяжкие раздумья родителей, преданных своим детям и друг другу. Я снова должен подчеркнуть, что говорю не об осознанных мотивах. Никто не имеет в виду, что ребенок преднамеренно и сознательно обманывает своих родителей из-за имеющихся у него эгоистичных генов. И я должен повторить, что когда я говорю нечто вроде: “Ребенок не должен упускать ни одной возможности смошенничать, соврать, обмануть, использовать все, что можно, в собственных целях”, слово “должен” я употребляю в особом смысле. Я не пропагандирую подобное поведение как нравственное или желательное. Я просто хочу сказать, что естественный отбор будет благоприятствовать детям, действующим подобным образом, и что поэтому мы можем столкнуться с мошенничеством и эгоизмом в пределах семьи. Слова “ребенок должен мошенничать” означают, что гены, склоняющие детей к мошенничеству, обладают преимуществом в генофонде. Единственная человеческая мораль, которую можно было бы из этого извлечь, заключается в том, что мы должны учить детей альтруизму, поскольку нельзя ожидать, что он составляет часть их биологической природы.

 

 

Глава 9. Битва полов

Если существует столкновение интересов родителей и детей, гены которых на 50 % одинаковы, то насколько более жестким должен быть конфликт между супругами, вовсе не связанными родством?[44] Все, что есть между ними общего, – их равные, по 50 %, генетические вклады в детей. Поскольку и отец, и мать заинтересованы в благополучии разных половинок одних и тех же детей, обоим может быть выгодно кооперироваться для их выращивания. Если, однако, одному из родителей удастся вложить в каждого ребенка меньше той доли ценных ресурсов, которую положено внести ему (ей), он окажется в лучшем положении, потому что сможет больше затратить на других детей, зачатых с другим половым партнером, и тем самым распространить большее число своих генов. Таким образом, каждого из партнеров можно рассматривать как индивидуума, который стремится эксплуатировать другого, пытаясь заставить его внести больший вклад в выращивание потомков. В идеале каждый индивидуум “хотел бы” (я не имею в виду, что он испытывал бы при этом физическое наслаждение, хотя это возможно) совокупляться с возможно большим числом представителей противоположного пола, предоставляя в каждом случае выращивание детей своему партнеру. Как мы увидим, у некоторых видов самцы достигли такого положения вещей, однако у других видов самцам приходится участвовать в выращивании детей наравне с самками. Подобный взгляд на половое партнерство как на отношения, характеризующиеся взаимным недоверием и взаимной эксплуатацией, особенно подчеркивает Триверс. Для этологов этот взгляд относительно нов. Мы привыкли рассматривать половое поведение, копуляцию и предшествующие ей церемонии ухаживания как некую совместную по своей сущности активность, предпринимаемую во имя взаимного блага и даже во благо данного вида.

Вернемся к первоосновам и займемся фундаментальной природой мужского и женского начал. В главе 3 мы говорили о существовании двух полов, не подчеркивая их изначальную асимметрию. Мы просто согласились с тем, что одних животных называют самцами, а других – самками, не задаваясь вопросом, что означают на самом деле эти слова. Но в чем же суть самцовости? И что, в сущности, определяет самку? Мы, будучи млекопитающими, связываем пол с целой совокупностью тех или иных признаков (наличие пениса, вынашивание детеныша, вскармливание с помощью специальных млечных желез, некоторые хромосомные отличия и тому подобное). Эти критерии, позволяющие определить пол индивидуума, очень хороши для млекопитающих, но применительно к животным и растениям вообще они не более надежны, чем склонность носить штаны в качестве критерия определения пола у человека. У лягушек, например, пениса нет ни у самца, ни у самки. Возможно в таком случае, что слова “самец” и “самка” не имеют универсального смысла. Это, в конечном счете, только слова, и если мы считаем, что они не могут помочь нам при описании лягушек, то мы вправе их отбросить. Мы могли бы произвольно разделить лягушек на пол № 1 и пол № 2. Однако между самцами и самками имеется одно фундаментальное различие, которое позволяет отличать самцов от самок у всех представителей животных и растений. Оно состоит в том, что половые клетки, или гаметы, самцов гораздо мельче и многочисленней, чем гаметы самок. Это относится и к животным, и к растениям. У одной группы индивидуумов половые клетки крупные, и их принято называть самками. У другой группы, которых принято называть самцами, половые клетки мелкие. Разница эта особенно хорошо выражена у птиц и у рептилий, у которых одна яйцеклетка довольно велика и содержит достаточное количество питательных веществ, чтобы прокормить развивающийся зародыш в течение нескольких недель. Даже у человека яйцеклетка, несмотря на ее микроскопические размеры, все же во много раз крупнее сперматозоида. Как мы увидим, все прочие различия между полами можно интерпретировать как вытекающие из этого базового различия.

У некоторых примитивных микроорганизмов, например у некоторых грибов, нет разделения на мужские и женские индивидуумы, хотя у них и происходит своего рода половое размножение. При так называемой изогамии нет мужских и женских индивидуумов, и любой индивидуум может спариваться с любым другим. Вместо гамет двух разных типов – сперматозоидов и яйцеклеток – у них имеются гаметы лишь одного типа, называемые изогаметами. Новые индивидуумы образуются путем слияния двух изогамет, каждая из которых получается в результате мейотического деления. Если у нас имеются три изогаметы – A, B и C, – то A может слиться с B или C, а B – с A или C. У организмов с нормальной системой спаривания это невозможно. Если A – сперматозоид, способный сливаться с B или C, то гаметы B и C представляют собой яйцеклетки и B не может слиться с C.

При слиянии двух изогамет обе они вносят в новый индивидуум равное число генов, а также равные количества запасов питательных веществ. Сперматозоиды и яйцеклетки также вносят равное число генов, но питательных веществ яйцеклетки вносят гораздо больше. Фактически сперматозоиды вовсе не содержат питательных веществ и просто обеспечивают как можно более быстрый перенос своих генов в яйцеклетку. Таким образом, в момент зачатия отец вносит в зародыш меньше ресурсов, чем те 50 %, которые ему следовало бы внести по справедливости. Поскольку каждый сперматозоид очень мал, самец может производить их по многу миллионов в сутки. Это означает, что он потенциально способен произвести на свет очень много детей за очень короткое время, спариваясь с разными женщинами. Это возможно только потому, что соответствующее питание каждому новому зародышу обеспечивает во всех случаях мать. Это обстоятельство ограничивает число детей, которых может иметь женщина, но число детей у мужчины практически неограниченно. С этого момента и начинается эксплуатация женщины[45].

Паркер и его коллеги показали, что такая асимметрия могла возникнуть из первоначальной изогамии. В те дни, когда все половые клетки были равноценны и имели примерно одинаковые размеры, среди них попадались клетки, которые случайно оказались чуть крупнее. В некоторых отношениях крупная изогамета, вероятно, имела известное преимущество над изогаметой средних размеров, потому что она, благодаря большому начальному запасу пищи, закладывала хороший фундамент для развития зародыша. Возможно поэтому существовало эволюционное направление в сторону увеличения размеров гамет. Однако в этом таилась некая опасность: возникновение в процессе эволюции изогамет более крупных, чем было строго необходимо, открывало дорогу эксплуатации в эгоистичных целях. Индивидуумы, вырабатывавшие гаметы мельче среднего размера, могли “заработать”, если бы им удалось обеспечить слияние своих мелких гамет с чересчур крупными. Этого можно было бы достигнуть, если бы мелкие гаметы стали более подвижными и обладали способностью к активному поиску крупных гамет. Преимущество, получаемое индивидуумом, который продуцирует мелкие быстро перемещающиеся гаметы, состоит в том, что он может позволить себе производить большее число гамет и поэтому потенциально иметь больше детей. Естественный отбор благоприятствовал образованию мелких половых клеток, которые активно искали крупные, чтобы слиться с ними. Таким образом, можно представить себе развитие двух дивергирующих сексуальных “стратегий”. Была стратегия большого вклада, или “честная” стратегия. Она автоматически открыла путь для эксплуататорской стратегии малого вклада. Как только началась дивергенция двух стратегий, она, вероятно, стала развиваться неконтролируемым образом. Промежуточные гаметы средних размеров оказывались в невыгодном положении, потому что у них не было ни одного из тех преимуществ, которыми обладала каждая из двух экстремальных стратегий. У эксплуататоров в процессе эволюции размеры уменьшались, а подвижность возрастала. Размеры “честных” гамет все больше увеличивались, чтобы компенсировать уменьшение вклада, вносимого эксплуататорами, и они стали неподвижными, потому что эксплуататоры и так активно охотились за ними. Каждая честная гамета, вероятно, “предпочла бы” слиться с другой честной гаметой. Но давление отбора, направленное на то, чтобы сдерживать эксплуататоров, должно было быть слабее, чем давление, заставлявшее эксплуататоров ловчить: они рисковали потерять больше, а поэтому выиграли эволюционное сражение. Честные превратились в яйцеклетки, а эксплуататоры – в сперматозоиды.

Итак, создается впечатление, что самцы – никчемные парни и просто из соображений “блага для вида” следует ожидать уменьшения их численности по отношению к самкам. Поскольку один самец теоретически способен произвести достаточно сперматозоидов, чтобы обслужить гарем из ста самок, можно было бы предположить, что соотношение самок и самцов в популяциях животных должно составлять сто к одному. Можно выразить это и так: самец “стоит дешевле”, а самки представляют большую “ценность” для вида. Конечно, с точки зрения вида так оно и есть. В качестве экстремального примера можно привести одну работу по морским слонам, у которых 4 % самцов обеспечивали 88 % всех наблюдавшихся копуляций. В этом случае, как и во многих других, в популяции имелся большой избыток холостых самцов, которым, возможно, ни разу в жизни не представилось случая спариться. Но эти “лишние” самцы во всем остальном вели нормальную жизнь и потребляли пищевые ресурсы популяции не менее усердно, чем другие взрослые индивидуумы. С точки зрения “блага для вида” это ужасное расточительство, и “лишних” самцов можно рассматривать как социальных паразитов. Перед нами просто еще один пример затруднений, с которыми сталкивается теория группового отбора. В отличие от этого теория эгоистичного гена легко позволяет объяснить примерно одинаковую численность самцов и самок, даже если из общего числа самцов лишь небольшая доля активно участвует в размножении. Впервые такое объяснение предложил Рональд Э. Фишер.

Проблема соотношения самцов и самок среди потомков – частный случай проблемы родительской стратегии. Точно так же, как мы обсуждали оптимальную величину семьи для отдельной матери, стремящейся максимизировать вероятность выживания своих генов, мы можем рассмотреть и оптимальное соотношение полов. Кому лучше доверить свои драгоценные гены – сыновьям или дочерям? Допустим, что мать вложила все свои ресурсы в сыновей, а на долю дочерей ничего не осталось. Окажется ли при этом ее вклад в генофонд будущих поколений в среднем больше, чем вклад соперницы, отдавшей все ресурсы дочерям? Становятся ли гены, детерминирующие предпочтение к сыновьям, более (или, напротив, менее) многочисленными, чем гены предпочтения к дочерям? Фишер показал, что при нормальных условиях стабильное соотношение полов составляет 50:50. Чтобы понять причину этого, нам следует сначала познакомиться с механизмом определения пола.

У млекопитающих генетический механизм определения пола состоит в следующем. Каждая яйцеклетка способна развиваться в индивидуум мужского или женского пола. Хромосомы, определяющие пол, заключены в сперматозоиде. Половина сперматозоидов, производимых мужчиной, содержит X-хромосому и определяет развитие самки, а половина содержит Y-хромосому и определяет развитие самца. Сперматозоиды обоих типов выглядят совершенно одинаково. Они различаются только по одной хромосоме. Ген, в результате действия которого отец может иметь только дочерей, достигает своей цели, заставляя его вырабатывать только сперматозоиды с X-хромосомой. Ген, благодаря наличию которого мать будет рожать только дочерей, может оказывать свое действие, заставляя ее секретировать спермицид с избирательным эффектом или выкидывать зародышей мужского пола. Мы снова ищем что-то эквивалентное эволюционно стабильной стратегии (ЭСС), хотя в данном случае, даже в еще большей степени, чем в главе об агрессии, стратегия – всего лишь фигура речи. Индивидуум не может в буквальном смысле слова выбирать пол для своих детей. Можно, однако, представить себе гены, детерминирующие рождение детей одного либо другого пола. Если допустить, что гены, благоприятствующие неравному соотношению полов, действительно существуют, может ли какой-то из них стать в генофонде более многочисленным, чем его соперники – аллели, благоприятствующие равному соотношению полов?

Допустим, что у морских львов, о которых говорилось выше, возник мутантный ген, детерминирующий рождение у родителей главным образом дочек. Поскольку в популяции нет недостатка в самцах, эти дочери, вероятно, без труда найдут себе брачных партнеров, и ген, детерминирующий рождение дочерей, сможет распространиться. В результате соотношение полов в популяции начнет сдвигаться в сторону преобладания самок. С точки зрения блага для вида это было бы прекрасно, поскольку всего несколько самцов вполне способны поставить сперматозоиды в количестве, необходимом для осеменения даже значительно преобладающего числа самок. Поэтому на первый взгляд можно было бы ожидать, что ген, детерминирующий рождение дочерей, будет продолжать распространяться до тех пор, пока соотношение полов не разбалансируется до такой степени, что несколько оставшихся самцов, работая до полного изнеможения, будут едва справляться. Те, кто производят на свет одних дочерей, наверняка обеспечивают себе несколько внуков, однако это ничто по сравнению с перспективами, которые открываются перед каждым, “специализирующимся” на сыновьях. Поэтому число генов, детерминирующих рождение сыновей, начнет возрастать и маятник качнется в обратную сторону.

Для простоты я описал ситуацию так, как если бы речь шла о маятнике. На самом деле маятнику никогда бы не было дозволено качнуться так сильно в сторону преобладания самок, потому что давление, направленное на рождение сыновей, начало бы толкать его в обратную сторону, как только соотношение полов отклонилось бы от нормального. Стратегия рождения в равном числе сыновей и дочерей – это эволюционно стабильная стратегия в том смысле, что любой ген, приводящий к отклонению от нее, ведет к чистому проигрышу.

Я рассказал все это, оперируя отношением числа сыновей к числу дочерей. Это было сделано для простоты, но, строго говоря, следовало бы строить рассуждения на основании родительского вклада (то есть всей пищи и других ресурсов, которые может предложить родитель), измеренного так, как это было сделано в главе 8. Родители должны распределять свой вклад поровну между сыновьями и дочерьми. Это обычно означает, что число сыновей должно быть равно у них числу дочерей. Возможно, однако, неравное соотношение полов, которое будет эволюционно стабильным, при условии соответственно неравного количества ресурсов, вкладываемых в сыновей и дочерей. В случае морских львов стабильной может быть стратегия, при которой число сыновей втрое меньше числа дочерей, но с тем условием, чтобы в каждого сына родители вкладывали втрое больше пищи и других ресурсов, превращая его в суперсамца. Вкладывая в сына больше пищи и делая его крупным и сильным, родители могут увеличить его шансы выиграть величайший приз – гарем. Но это особый случай. Обычно вклады в каждого сына примерно равны вкладам в каждую дочь, и соотношение полов в численном выражении, как правило, составляет один к одному.

Поэтому на своем долгом пути из поколения в поколение средний ген примерно половину своего времени проводит в телах самцов, а другую половину – в телах самок. Некоторые эффекты генов проявляются только в телах индивидуумов какого-то одного пола. Эти эффекты называют признаками, сцепленными с полом. Ген, контролирующий длину пениса, проявляет свой эффект только в телах самцов, но он содержится и в телах самок и, возможно, в телах самок обладает каким-то совсем другим эффектом. Нет причин, почему мужчина не смог бы унаследовать тенденцию к развитию длинного пениса от своей матери.

В каком бы из этих двух типов тел ни находился ген, мы можем ожидать, что он наилучшим образом использует предоставляемые этим телом возможности. Последние могут сильно различаться в зависимости от того, принадлежит ли тело индивидууму мужского или женского пола. В качестве удобного приближения мы можем еще раз допустить, что каждое тело представляет собой эгоистичную машину, пытающуюся как можно лучше относиться ко всем своим генам. Часто наилучшей политикой для такой эгоистичной машины было бы делать одно, если она мужского пола, и совсем другое, если женского. Для краткости мы снова примем допущение, что индивидуум имеет некую осознанную “цель”. И опять-таки мы должны постоянно помнить, что это всего лишь фигура речи. На самом деле тело – это машина, слепо запрограммированная своими эгоистичными генами.

Вернемся к брачной паре, с которой мы начали эту главу. Оба партнера, будучи эгоистичными машинами, “хотят” иметь сыновей и дочерей в равном числе. До этого момента их интересы совпадают. Разногласия возникают по поводу того, кто должен нести бремя расходов по выращиванию всех этих детей. Каждый индивидуум хочет, чтобы у него выжило как можно больше детей. Чем меньше ему или ей приходится вкладывать в каждого из детей, тем больше детей он или она смогут иметь. Очевидный способ достигнуть этого желаемого положения вещей состоит в том, чтобы склонить своего брачного партнера внести в каждого ребенка больше, чем положенная ему или ей доля ресурсов, а затем предоставить ему или ей свободу заводить других детей с другими партнерами. Такая стратегия была бы желательна для обоих полов, однако осуществить ее самке труднее. Поскольку мать с самого начала вкладывает в ребенка – в форме своего крупного богатого питательными веществами яйца – больше, чем отец, она уже в момент зачатия принимает на себя более серьезные “обязательства” в отношении каждого ребенка, чем это делает отец. Если ребенок гибнет, она теряет больше, чем отец. Точнее, ей пришлось бы внести больший, чем отцу, вклад в будущем, чтобы родить на замену нового ребенка и довести его до того же возраста. Если бы она попыталась оставить ребенка на отца, а сама ушла бы к другому самцу, то отец мог бы за счет относительно небольших потерь для себя отомстить ей, в свою очередь бросив ребенка. Поэтому, по крайней мере на ранних стадиях развития ребенка, если кто-то кого-то и бросает, то чаще отец уходит от матери, чем наоборот. Кроме того, следует ожидать, что самки будут вкладывать в детей больше, чем самцы, не только в самом начале, но и на всем протяжении развития. Например, у млекопитающих именно самка вынашивает плод в собственном теле, вырабатывает молоко, которым кормит родившегося детеныша, на нее ложится главная часть тягот по его выращиванию и защите. Женский пол находится в положении эксплуатируемого, и исходная эволюционная основа для его эксплуатации – тот факт, что яйцеклетки крупнее сперматозоидов.

Конечно, у многих видов отец усердно и преданно ухаживает за детенышем. Но даже в этом случае следует ожидать, что обычно на самцов должно оказываться какое-то эволюционное давление, заставляющее их вкладывать в каждого детеныша чуть меньше, чтобы иметь возможность заводить новых от других жен. Под этим я просто имею в виду, что генам, которые говорят: “Тело! Если ты мужского пола, оставь свою подругу чуть раньше, чем тебе советует конкурирующий со мной аллель, и поищи себе другую”, вероятно, обеспечен успех в генофонде. Степень преобладания такого эволюционного давления в действительности сильно различается у разных видов. У многих форм, например у райских птиц, самец вообще не помогает самке, и она выращивает птенцов самостоятельно. Другие виды, такие как моевки, образуют моногамные пары, которые отличаются поразительной верностью и выращивают птенцов совместно. Здесь мы должны допустить вмешательство какого-то противодействующего эволюционного давления: очевидно, эгоистичная стратегия эксплуатации брачного партнера сопряжена не только с выигрышем, но и с каким-то проигрышем, и у моевок этот проигрыш превосходит выигрыш. Во всяком случае, отцу всегда выгоднее оставить жену и ребенка, если у нее достаточно шансов вырастить ребенка самостоятельно.

Триверс рассмотрел возможный образ действия матери, покинутой брачным партнером. Лучше всего ей было бы попытаться обмануть другого самца, “убедив” его, что он – отец ее детеныша. Это может оказаться не таким уж трудным делом, если детеныш еще не родился, то есть находится на стадии плода. Конечно, детеныш несет половину ее генов и ни единого гена своего доверчивого отчима. Естественный отбор должен сурово карать такую доверчивость самцов и благоприятствовать самцам, которые, как только они вступают в брачные отношения с новой женой, предпринимали бы активные шаги, чтобы убивать потенциальных пасынков или падчериц. Этим, вполне возможно, объясняется эффект Брюс: у мышей самец секретирует химическое вещество, запах которого вызывает выкидыш у беременной самки. Запах секрета ее первого брачного партнера такого действия не оказывает. Так самец мыши уничтожает своих потенциальных приемышей и обеспечивает рецептивность новой партнерши к своим ухаживаниям. Между прочим, Ардри рассматривает эффект Брюс как механизм регулирования численности популяций! Сходным примером служат самцы львов, которые, впервые примкнув к прайду, иногда убивают имеющихся в нем детенышей, предположительно потому, что это не их собственные дети.

Самец может достигнуть того же результата, необязательно убивая чужих детенышей. Он может навязать самке, прежде чем совокупиться с ней, длительный период ухаживания, в течение которого будет отгонять от нее всех других самцов и не давать ей убежать. Так он может выяснить, не несет ли она в чреве чужих детенышей, и, если она окажется беременной, бросить ее. Ниже нам станет ясна причина, почему самке мог бы оказаться желательным такой длительный период “помолвки”, предшествующий копуляции. Здесь мы изложили возможную причину, побуждающую к этому самца. При условии, что он сможет изолировать ее от любых контактов с другими самцами, это помогает ему избежать возможности стать невольным благодетелем детенышей другого самца.

Допустим теперь, что брошенная самка не сможет обмануть нового самца, заставив его усыновить ее детенышей. Что ей остается делать? Многое тут зависит от возраста детеныша. Если он только что зачат, то, хотя она вложила в зародыш целое яйцо, а возможно, и больше, ей все же может оказаться выгодным выкинуть его и как можно скорее найти нового брачного партнера. При таких обстоятельствах и ей, и ее потенциальному новому партнеру будет выгоднее, чтобы произошел выкидыш, поскольку мы исходим из допущения, что у самки нет надежды обманом заставить партнера усыновить ее детеныша. Это могло бы объяснить, почему эффект Брюс приемлем с точки зрения самки.

Другая возможность для брошенной самки – выставить свое положение напоказ и попытаться вырастить своего детеныша самостоятельно. Это может оказаться для нее особенно выгодным, если детеныш достаточно велик. Чем он старше, тем больше в него уже вложено и тем меньше ресурсов ей придется затратить, чтобы довести дело до конца. Даже если он еще довольно мал, ей все же может быть выгодно постараться извлечь хоть какую-то выгоду из своего первоначального вклада, хотя, возможно, ей придется трудиться вдвое усердней, чтобы прокормить детеныша, оставшись без самца. Ее не утешает возможность отомстить самцу, бросив детеныша, несущего половину генов этого самца. Месть просто как месть не имеет смысла. Детеныш несет половину ее генов, и решать проблему предстоит ей одной.

Как это ни парадоксально, для самки, которой грозит перспектива быть брошенной, может оказаться целесообразным бросить самца прежде, чем он бросит ее. Это может оправдать ее затраты, даже если она вложила в детеныша больше, чем самец. Неприятная правда состоит в том, что при некоторых обстоятельствах преимущество получает тот из партнеров, который уходит первым. Как пишет Триверс, оставшийся партнер попадает в скверный переплет. Это довольно неприятный, но очень тонкий аргумент. Можно ожидать, что один из родителей покинет детеныша, когда он (или она) будет иметь возможность сказать: “Развитие этого ребенка достигло такого уровня, что любой из нас двоих мог бы в одиночку справиться с его дальнейшим выращиванием. Поэтому мне было бы выгодно уйти сейчас, если я могу быть уверен, что мой партнер не сделает то же самое. Если я брошу семью сейчас, мой партнер сделает то, что он считает наилучшим для ее (его) генов. Он (она) будет вынужден(а) принять более радикальное решение, чем я принимаю сейчас, потому что к тому моменту меня уже рядом не будет. Мой партнер будет ‘знать’, что если он (она) также уйдет, то детеныш наверняка погибнет. Поэтому, допуская, что мой партнер примет решение, которое будет наилучшим для его (ее) эгоистичных генов, я прихожу к заключению, что наилучшее решение для меня самого – уйти первым. Это тем более правильно, что мой партнер рассуждает точно таким же образом и может в любую минуту перехватить инициативу, бросив меня”. Как и во всех других случаях, этот монолог приведен лишь в качестве иллюстрации. Идея в том, что отбор будет благоприятствовать генам “первоочередного дезертирства” просто в силу того, что генам “дезертирства во вторую очередь” он благоприятствовать не будет.

Мы рассмотрели действия, которые может предпринять самка, покинутая своим брачным партнером. Но это напоминает игрока, делающего хорошую мину при плохой игре. Может ли самка предпринять какие-то действия, чтобы с самого начала ослабить эксплуатацию со стороны самца? У нее есть надежный способ: она может отказаться спариваться. Она пользуется спросом, причем спрос превышает предложение. Это объясняется тем, что у нее есть приданое – крупное, наполненное питательными веществами яйцо. Самец, которому удалось успешно спариться, получает ценный запас пищи для потомства. Самка имеет потенциальную возможность отчаянно торговаться, прежде чем согласиться спариться. Соглашаясь, она идет ва-банк – ее яйцо вверено самцу. Можно сколько угодно говорить о торговле, однако мы прекрасно знаем, что на самом деле этого не происходит. Существует ли какой-то реальный способ, с помощью которого под действием отбора могло возникнуть нечто, равноценное отчаянной торговле? Рассмотрим две возможности: стратегию Домашнего уюта (domestic-bliss strategy) и стратегию Настоящего мужчины (he-man strategy).

В простейшем виде стратегия Домашнего уюта состоит в следующем. Самка изучает самцов и старается заранее определить, свойственна ли им верность и приверженность домашнему очагу. Самцы, входящие в данную популяцию, различаются по степени предрасположенности к роли верных мужей. Если бы самки умели распознавать такие качества заранее, они могли бы вознаградить себя, выбирая самцов, обладающих этими качествами. Один из путей к этому – долго не подпускать к себе самца, разыгрывая скромницу. Самец, который не обладает достаточным терпением, чтобы ждать, пока самка в конце концов согласится спариться, вряд ли окажется верным супругом. Настаивая на долгом ухаживании, самка отвергает несерьезных поклонников и, наконец, спаривается с самцом, доказавшим наперед свою верность и настойчивость. Женская скромность – а также длительные ухаживания или помолвки – действительно часто наблюдается у животных. Как уже говорилось, длительная помолвка выгодна и самцу – в тех случаях, когда есть опасность, что его могут одурачить, заставив заботиться о чужих отпрысках.

Брачные церемонии нередко бывают сопряжены для самца со значительными докопуляционными вкладами. Самка может отказаться спариваться, пока самец не построит ей гнездо или не скормит ей порядочное количество пищи. Это, конечно, очень хорошо с точки зрения самки, но вместе с тем наводит на мысль об еще одной возможной версии стратегии Домашнего уюта. Быть может, самка вынуждает самца вносить такие большие вклады в потомство, прежде чем допустить спаривание, чтобы самцу было невыгодно покинуть ее после спаривания? Эта мысль притягательна. Самец, который ждет, пока скромная самка в конце концов согласится с ним спариться, несет определенные расходы: он воздерживается от копуляции с другими самками и тратит уйму времени и энергии, ухаживая за своей избранницей. Когда, наконец, она подпускает его к себе, он оказывается уже довольно сильно “связанным” с ней. Перспектива бросить ее для него малопривлекательна, если он знает, что любая самка, к которой он приблизится, будет тянуть время.

Как я показал в одной работе, здесь в рассуждениях Триверса есть ошибка. Он считает, что предварительный вклад обрекает данного индивидуума на дальнейшее вложение ресурсов. Это порочная экономика. Бизнесмен никогда не скажет, например: “Я вложил в авиалайнер ‘Конкорд’ так много, что не могу теперь бросить проект”. Вместо этого он всегда постарается выяснить, окажется ли ему выгодно в будущем, если он сократит свои потери и выйдет сейчас из дела, несмотря на то, что он уже много вложил в него. Точно так же самке не имеет смысла заставлять самца много вкладывать в нее в надежде, что это само по себе удержит самца. Эта версия стратегии Домашнего уюта требует еще одного решающего допущения: что большинство самок наверняка ведут ту же игру. Если в популяции есть свободные самки, готовые принять самцов, которые покинули своих жен, то самцу может оказаться выгодным бросить жену, независимо от того, сколько он уже вложил в ее детей.

Многое поэтому зависит от того, как ведет себя большинство самок. Если мы были бы вправе исходить из некого заговора самок, никаких проблем не возникало бы. Однако заговор самок так же невозможен, как заговор Голубей (глава 5). Нам следует искать не заговоры, а эволюционно стабильные стратегии. Воспользуемся методом анализа агрессивных конфликтов, созданного Мейнардом Смитом, и применим его к взаимоотношениям полов[46]. Это будет несколько сложнее, чем в случае конфликта Ястребов и Голубей, потому что при этом нам придется иметь дело с двумя стратегиями самок и двумя стратегиями самцов.

Как и в работах Мейнарда Смита, слово “стратегия” означает слепую неосознанную программу поведения. Наши две стратегии самок мы назовем Скромница и Распутница, а две стратегии самцов – Верный и Гуляка. При этих четырех стратегиях соблюдаются следующие правила поведения. Скромницы не станут спариваться с самцом, пока он не предпримет длительное и дорогостоящее ухаживание, продолжающееся несколько недель. Распутницы немедленно соглашаются спариваться с любым самцом. “Верные” самцы готовы к длительному ухаживанию, а после копуляции остаются с самкой и помогают ей выращивать детенышей. Гуляки быстро теряют терпение, если самка не соглашается спариваться сразу. Они бросают ее и отправляются на поиски другой. После копуляции они опять-таки не остаются с самкой и не ведут себя как заботливые отцы, а уходят, чтобы искать новую подругу. Как и в случае Ястребов и Голубей, это не единственные возможные стратегии, но, тем не менее, изучить их небесполезно.

Подобно Мейнарду Смиту, мы воспользуемся некоторыми произвольными числами для оценки проигрышей и выигрышей. В более общем виде это можно было бы выразить с помощью алгебраических символов, но, оперируя числами, легче понять суть дела. Допустим, что генетический выигрыш, полученный в случае успешного выращивания ребенка, составляет 15 единиц. Расходы, связанные с выращиванием одного ребенка, то есть стоимость всей съеденной им пищи, всего времени, затраченного на уход за ним, и всех рисков, на которые пришлось пойти ради него, равны –20 единицам. Стоимость выражается отрицательной величиной, поскольку “выплачивается” родителями. Отрицательной величиной выражается также стоимость времени, затраченного на длительное ухаживание (допустим, что она равна –3).

Представим себе, что в рассматриваемой нами популяции все самки – скромницы, а все самцы – верные супруги. Это идеальное моногамное общество. Самец и самка, составляющие пару, оба получают одинаковый средний выигрыш – по 15 единиц за каждого выращенного детеныша и делят между собой поровну все расходы по его выращиванию (–20), то есть в среднем на долю каждого приходится по –10. Оба они платят по –3 единицы за время, затраченное на продолжительное ухаживание. В результате средний выигрыш каждого из них составит: 15–10 – 3 = 2.

Допустим теперь, что в рассматриваемой популяции появилась одна самка-распутница. Она чувствует себя прекрасно. Она не расплачивается за потерю времени, потому что не требует длительного ухаживания. Поскольку все самцы в данной популяции верные, она может рассчитывать на то, что ей удастся получить хорошего отца для своих детей, с кем бы она ни соединилась. Ее средний выигрыш на ребенка равен 15–10 = 5. Она получает на 3 единицы больше, чем ее скромные соперницы. Поэтому гены распутства начнут распространяться.

Если распутные самки добиваются такого большого успеха, что они начинают преобладать в данной популяции, в лагере самцов также начинаются изменения. До сих пор верные самцы обладали монополией. Но теперь, если в популяции появляется Гуляка, он начинает добиваться большего успеха, чем Верные. В популяции, где все самки представлены Распутницами, возможности выбора для Гуляки воистину огромны. Он получает 15 единиц в случае успешного выращивания детеныша, причем не несет никаких расходов. Главное значение отсутствия расходов состоит для него в том, что он волен бросить семью и спариваться с новыми самками. Каждая из его несчастных партнерш одна бьется с детенышем и оплачивает при этом полностью все расходы, то есть 20 единиц, хотя не платит ничего за потерю времени в период ухаживания. Чистый выигрыш для Распутницы, когда она встречает Гуляку, равен: 15–20 = –5, а для самого Гуляки – 15. В популяции, в которой все самки – Распутницы, гены Гуляки будут распространяться с молниеносной быстротой.

Если число Гуляк возрастает так быстро, что они достигают большинства среди мужской части популяции, то Распутницы попадают в очень трудное положение. Любая Скромница получает преимущество. Если она встречает Гуляку, это кончается ничем. Самка настаивает на длительном ухаживании, самец отказывается и уходит на поиски другой самки. Ни одному из партнеров не приходится платить за потерянное время. Ни один из них ничего и не выигрывает: детеныша не было. В популяции, где все самцы – Гуляки, итог для Скромницы равен нулю. Может показаться, что нуль – это немного, однако это лучше, чем –5 (среднее число очков для Распутницы). Даже если Распутница решит бросить своего детеныша после того, как от нее уйдет Гуляка, ей тем не менее придется понести значительный ущерб – стоимость яйца. В результате гены скромности вновь начинают распространяться в популяции.

Этот гипотетический цикл завершается, когда Скромниц становится так много, что они преобладают в популяции, и Гуляки, которым жилось так привольно с Распутницами, попадают в трудное положение. Одна самка за другой настаивают на длительном и неутомимом ухаживании. Гуляка бросается от одной к другой и всякий раз сталкивается с одним и тем же. Чистый выигрыш Гуляки, если все самки становятся Скромницами, равен нулю. Если в таких условиях появляется верный самец, он оказывается единственным, с кем скромные самки соглашаются спариваться. Его чистый выигрыш будет равен 2, то есть превысит выигрыш Гуляки. Итак, число генов верности начинает возрастать, то есть мы проделали полный цикл.

Как и при анализе агрессии, я описал весь процесс так, как если бы речь шла о бесконечно продолжающейся осцилляции. Однако, как и в случае агрессии, можно показать, что на самом деле никакой осцилляции происходить не будет и система перейдет в стабильное состояние[47]. Произведя соответствующие вычисления, можно убедиться, что популяция, в которой 5/6 самок – Скромницы и 5/8 самцов – Верные, эволюционно стабильна. Это соотношение, разумеется, относится только к тем произвольным числам, с которых мы начали наши рассуждения, но нетрудно показать, что существуют стабильные соотношения для любых других произвольных допущений.

Как и при анализах Мейнарда Смита, не следует думать, что существует два разных типа самцов и два разных типа самок. С тем же успехом описанная ЭСС может быть достигнута, если каждый самец расходует 5/8 своего времени на то, чтобы быть Верным, а в остальное время ведет себя как Гуляка, а каждая самка в течение 5/6 своего времени – Скромница, а в оставшуюся 1/6 – Распутница. Как бы мы ни подходили к ЭСС, суть ее в следующем: любая тенденция со стороны представителей одного или другого пола отклониться от положенного им стабильного соотношения немедленно повлечет за собой штраф – соответствующее изменение в соотношении стратегий другого пола, что в свою очередь окажется невыгодным отступнику. Таким образом, ЭСС будет сохранена.

В заключение можно сказать, что популяция, состоящая главным образом из Скромниц и Верных, безусловно может эволюционировать. В этих условиях с помощью стратегии Домашнего уюта самки, по-видимому, в самом деле могут добиться успеха. Не следует думать, что здесь мы имеем дело с каким-то заговором Скромниц. Скромность действительно может принести выигрыш эгоистичным генам самки.

Существует несколько способов, с помощью которых самки могут реально использовать стратегию этого типа. Как я уже заметил, самка может отказаться спариваться с самцом, который не построил ей гнездо или по крайней мере не помог его строить. И в самом деле, у многих моногамных видов копуляция происходит лишь после того, как гнездо построено. В результате к моменту осеменения самец уже вложил в птенца гораздо больше, чем дешевые сперматозоиды.

Требование, чтобы будущий супруг строил гнездо, – один из действенных способов, который может использовать самка, чтобы заманить самца. Можно было бы думать, что для этого теоретически годится почти все, требующее от самца больших затрат, даже если эти затраты не реализуются в форме непосредственного выигрыша для неродившихся детенышей. Если бы все самки в данной популяции заставляли самцов совершить что-либо трудное и дорогостоящее (например, убить дракона или взобраться на гору), прежде чем согласиться спариваться с ними, они теоретически могли бы уменьшить для самцов искушение сбежать после копуляции. Любой самец, склоняющийся к тому, чтобы бросить супругу и постараться распространить дополнительное количество своих генов с помощью другой самки, может отказаться от этого намерения при мысли о том, что для этого ему придется убить еще одного дракона. На практике, однако, вряд ли самки потребуют от своих поклонников выполнения таких задач, как убийство дракона или поиски Грааля. Причина здесь в том, что самка-соперница, которая поставила бы перед самцом задачу не менее трудную, но более полезную для нее самой и для ее детенышей, обладала бы преимуществом над романтически настроенными самками, требующими бессмысленных подвигов во имя любви. Построить гнездо, вероятно, менее романтично, чем убить дракона или переплыть Геллеспонт, но зато гораздо полезнее.

Как я уже говорил, самке выгодно также, чтобы в процессе ухаживания самец подносил ей еду. У птиц это обычно рассматривается как своего рода возврат к ювенильному поведению со стороны самки. Выпрашивая у самца пищу, она сопровождает это движениями, типичными для молодой птицы. Предполагалось, что такое поведение автоматически привлекает самца, подобно тому как мужчине кажется привлекательным, когда взрослая женщина лепечет или надувает губы, как ребенок. Именно в этот период птице женского пола требуется как можно больше дополнительной пищи, так как она накапливает запасы питательных веществ для яиц. Возможно, пища, подносимая ей самцом, составляет его непосредственный вклад в яйца. Таким образом, разница между первоначальными вкладами в птенцов со стороны одного и другого родителей несколько снижается.

У некоторых насекомых и пауков также наблюдается подношение пищи как один из элементов брачного поведения. Здесь альтернативное объяснение иногда представляется чересчур очевидным. Поскольку, как у богомола, самцу грозит опасность быть съеденным самкой (она крупнее его), все, что бы он ни сделал для уменьшения ее аппетита, пойдет ему на пользу. В некотором, хотя и мрачноватом, смысле можно сказать, что несчастный самец богомола вносит вклад в своих потомков. Его используют в качестве пищи, помогающей самке продуцировать яйцо, которое будет оплодотворено после его гибели его же собственной сбереженной спермой.

Самка, избравшая стратегию Домашнего уюта, которая просто окидывает самца взглядом и старается наперед распознать его “верные” качества, рискует быть обманутой. Любой самец, способный выдать себя за верного приверженца домашнего очага, а на самом деле склонный к нарушению долга и верности, может извлечь из этого большую выгоду. Если только его брошенные партнерши имеют шанс вырастить хотя бы некоторых из его детенышей, Гуляка сумеет передать следующим поколениям больше своих генов, чем порядочный супруг и отец. Отбор благоприятствует сохранению в генофонде генов, детерминирующих у самцов эффективный обман.

Естественный отбор благоприятствует также самкам, которые умеют распознавать такой обман. Один из путей к этому – разыгрывать перед новым самцом совершенную неприступность, но в последующие сезоны размножения все быстрее уступать домогательствам прошлогоднего партнера. Это автоматически поставит в невыгодные условия молодых самцов, впервые участвующих в размножении, независимо от того, обманщики они или нет. Потомство скромных самок, размножающихся впервые, будет содержать относительно высокую долю генов, полученных от неверных отцов, но верные отцы будут обладать преимуществом во второй и последующие годы размножения самки, потому что им не придется тратить много времени и энергии на повторение всего ритуала ухаживания. Если большинство индивидуумов в данной популяции – потомки опытных, а не простодушных матерей (это вполне приемлемое допущение в отношении любого вида с большой продолжительностью жизни), то в генофонде будут преобладать гены, детерминирующие честность и другие положительные качества отцов.

Для простоты все рассуждения велись так, как если бы самец был либо кристально честным, либо беспардонным обманщиком. На самом же деле более вероятно, что все самцы, да и все индивидуумы, всегда немножко склонны к обману, поскольку они запрограммированы на то, чтобы использовать любую возможность для эксплуатации своих партнеров. Естественный отбор, оттачивая способность каждого партнера обнаруживать нечестность другого, сдерживает широкомасштабный обман. Самцам нечестность выгоднее, чем самкам, и следует ожидать, что даже у тех видов, у которых самцы проявляют значительный родительский альтруизм, они обычно трудятся чуть меньше, чем самки, и чуть чаще готовы сбежать. Несомненно, так обстоит дело у птиц и млекопитающих.

Существуют, однако, виды, у которых самец принимает большее участие в заботе о потомстве, нежели самка. Такие примеры отцовской преданности у птиц и млекопитающих исключительно редки, но среди рыб они обычны. Почему?[48] Этот факт бросает вызов теории эгоистичного гена, и он долго озадачивал меня. Остроумное решение предложила мне недавно мисс Тамсин Р. Карлайл на одной из наших консультаций. Она использовала идею Триверса о “скверном переплете” следующим образом.

Многие рыбы не копулируют, а просто извергают свои половые клетки в воду. Оплодотворение происходит в воде, а не в теле одного из партнеров. Возможно, что половое размножение возникло именно так. Однако наземные животные, то есть многие птицы, млекопитающие и рептилии, не могут прибегнуть к такому способу оплодотворения, потому что в воздушной среде половые клетки быстро высыхают. Гаметы индивидуума одного пола (самца, поскольку сперматозоиды подвижны) вводятся во влажное влагалище представителя другого пола (самки). До сих пор были только факты. Теперь – гипотеза. После копуляции обитающая на суше самка оказывается физической обладательницей эмбриона. Он находится в ее теле. Даже если она откладывает оплодотворенное яйцо почти немедленно после копуляции, у самца есть время исчезнуть, и в результате самка попадает в Триверсов “переплет”. Самец неизменно обладает правом первым принять решение о том, чтобы сбежать, лишая самку этой возможности и заставляя ее решать, бросить ли детеныша на верную гибель или же остаться с ним и вырастить его. Поэтому у наземных животных материнская забота распространена шире, чем отцовская.

 

У рыб и у других животных, обитающих в воде, дело обстоит иначе. Если самец не вводит в буквальном смысле слова свои сперматозоиды в тело самки, то никак нельзя говорить, что самку бросают “с ребенком на руках”. Каждый из партнеров может быстро удалиться и оставить другому только что оплодотворенные яйца. Существует даже причина, по которой нередко именно самцу грозит опасность оказаться покинутым. Представляется вероятным, что может вспыхнуть эволюционная битва за то, кому первому выбросить в воду свои половые клетки. Тот из партнеров, который сумеет сделать это раньше, получит возможность оставить новые зародыши на другого. Однако при этом тот, кто первым нерестится, идет на риск, поскольку его предполагаемый партнер может не последовать его примеру. В этом отношении самец рискует сильнее уже потому, что сперматозоиды меньше весят и легче рассеиваются. Если самка отнерестится слишком рано, то есть до того, как самец готов оплодотворить ее икру, это не будет иметь большого значения, поскольку относительно крупные и тяжелые икринки, вероятно, в течение некоторого времени будут оставаться вместе, в виде единой кладки. Поэтому самка может “пойти на риск” и отметать икру раньше. Самец же рисковать не может, потому что его сперматозоиды успеют уплыть далеко, прежде чем самка будет готова к икрометанию, а в таком случае она вообще не станет метать икру (это было бы бессмысленно). Таким образом, самец должен дождаться, пока самка не отложит икру, после чего он выметывает на нее сперматозоиды. Однако при этом в распоряжении самки остается несколько секунд, чтобы исчезнуть и поставить его перед дилеммой Триверса. Итак, эта теория изящно объясняет, почему отец часто берет на себя заботу о потомстве в водной среде, но редко – на суше.

Перейдем теперь ко второй основной стратегии самки – к стратегии Настоящего мужчины. У видов, прибегающих к этой стратегии, самки в сущности смиряются с тем, что они никогда не дождутся помощи от отца своих детей, но идут на все, чтобы заполучить вместо этого хорошие гены. Они снова прибегают к своему испытанному оружию, то есть всячески оттягивают копуляцию. Они отказываются копулировать с первым попавшимся самцом, придирчиво изучая претендента, прежде чем согласиться на копуляцию. У некоторых самцов, несомненно, больше ценных генов, то есть генов, повышающих перспективы на выживание как сыновей, так и дочерей, чем у других. Если самка способна по внешним признакам каким-то образом выявить наличие у самцов ценных генов, она может принести пользу собственным генам. Обратившись к нашей аналогии с командами гребцов, можно сказать, что самка способна свести к минимуму шансы на то, что ее гены, попав в дурную компанию, сильно проиграют. Она может постараться подобрать для собственных генов хорошую команду.

По всей вероятности, большинство самок сойдутся во мнении насчет того, кого следует считать наилучшими самцами, поскольку все они пользуются одной и той же исходной информацией. Поэтому в копуляции будут участвовать в основном несколько счастливых самцов. Они вполне способны делать это, поскольку дают каждой самке лишь несколько сперматозоидов, которые дешево им обходятся. Вероятно, так обстоит дело у морских слонов и райских птиц. Самки разрешают лишь очень немногим самцам вести себя эгоистично и эксплуататорски (к чему стремятся все самцы), предоставляя эту возможность только лучшим самцам.

Какими, с точки зрения самки, старающейся выбрать ценные гены и соединить их со своими, должны быть эти гены? Прежде всего они должны обеспечивать способность к выживанию. Безусловно любой потенциальный брачный партнер, ухаживающий за самкой, уже доказал свою способность дожить по крайней мере до зрелости, однако это еще не означает, что он может прожить гораздо дольше. Вполне разумной для женщины политикой может оказаться решение связать судьбу со старым человеком. Какими бы ни были недостатки стариков, они во всяком случае доказали свою способность выжить, так что самка, вероятно, согласится соединить свои гены с генами долговечности. Однако нет никакого смысла добиваться долгой жизни для своих детей, если они не смогут родить ей много внуков. Долговечность нельзя считать несомненным доказательством способности к деторождению. На самом деле “долговечный” самец, возможно, выживает именно потому, что не идет на риск ради участия в размножении. Самка, выбирающая в качестве брачного партнера старого самца, необязательно будет иметь больше потомков, чем ее соперница, выбравшая молодого, который, судя по каким-то другим признакам, обладает ценными генами.

Эти признаки разнообразны: например, сильные мышцы, свидетельствующие об умении добывать пищу, или длинные ноги, свидетельствующие о способности убегать от хищников. Самка может облагодетельствовать свои гены, связав их с такими признаками, поскольку это полезные признаки для ее сыновей и дочерей. В таком случае мы прежде всего должны представить себе, что самки выбирают самцов на основе подлинных меток (индикаторов), свидетельствующих о наличии у этих самцов ценных генов. Здесь имеется, однако, очень интересный момент, на который обратил внимание Дарвин и который четко сформулировал Фишер. В сообществе, где самцы конкурируют друг с другом за то, чтобы самки выбирали их как носителей мужских доблестей, лучшее, что самка может сделать для своих генов, это родить сына, который в свою очередь станет привлекательным самцом. Если она сможет добиться того, чтобы ее сын стал одним из тех немногих удачливых индивидуумов, на долю которых выпадает большая часть копуляций в том сообществе, где они выросли, то у нее будет огромное число внуков. Результат сводится к тому, что одно из самых желательных качеств самца в глазах самки – это попросту сексуальная привлекательность. Самка, спаривающаяся со сверхпривлекательным самцом, имеет больше шансов родить сыновей, которые будут привлекательны для самок следующего поколения и наградят ее множеством внуков. Таким образом, можно считать, что первоначально самки выбирают самцов на основании таких явно полезных признаков, как мощные мышцы, однако после того, как самки данного вида признают эти признаки привлекательными, естественный отбор будет продолжать благоприятствовать им просто потому, что они привлекательны.

Такие причудливые признаки, как хвосты у самцов райских птиц, могли поэтому возникнуть в результате какого-то нестабильного процесса, вышедшего из-под контроля[49]. В самом начале самки, возможно, отдавали предпочтение длинным хвостам как желательному признаку у самцов, вероятно, предвещающему половую потенцию и здоровье их обладателей. Короткий хвост у самца мог свидетельствовать о витаминной недостаточности, что, в свою очередь, указывает на неумение добывать пищу. Или, может быть, короткохвостые самцы недостаточно проворно убегали от хищников и те успевали выдрать им хвосты. Обратите внимание: нам нет необходимости допускать, что короткий хвост как таковой был унаследован генетически, мы рассматриваем его лишь в качестве индикатора какой-то генетической неполноценности. Во всяком случае, независимо от причины, давайте допустим, что самки предкового вида райских птиц предпочитали самцов, у которых хвосты были длиннее, чем в среднем в популяции. При условии, что в природной изменчивости длины хвоста у самцов участвует генетическая компонента, это с течением времени должно было привести к увеличению средней длины хвостов у самцов. Самки следовали простому правилу: осмотри всех самцов и займись тем, у которого хвост самый длинный. Любая самка, нарушившая это правило, оказывалась в проигрыше, даже если хвосты уже стали такими длинными, что осложняли жизнь своим обладателям. Проигрыш объяснялся тем, что самка, не произведшая на свет длиннохвостых сыновей, вряд ли могла рассчитывать на их репродуктивный успех. Подобно моде на женские туалеты или дизайн автомобилей, тенденция к длинным хвостам, однажды возникнув, стала сама набирать силу. Она перестает усиливаться лишь после того, как хвосты становятся столь нелепо длинными, что создаваемые ими неудобства перевешивают то преимущество, которое они дают в смысле привлечения самок.

Эта мысль трудна для восприятия и вызывает немало скептических высказываний с тех самых пор, как Дарвин впервые сформулировал ее под названием полового отбора. Одним из тех, кто не принял ее, является Амоц Захави, автор теории “Лиса, лиса”, о которой мы уже говорили. В качестве альтернативного объяснения он выдвигает собственный, сводящий с ума своей парадоксальностью, “принцип гандикапа”[50]. Захави подчеркивает, что именно стремление самок выбирать самцов, несущих ценные гены, открывает перед самцами возможности для обмана. Крепкие мышцы – действительно ценное качество, которое может сыграть решающую роль для самки при выборе самца, но что мешает в таком случае самцам наращивать фальшивые мышцы, в принципе не отличающиеся от накладных плеч у людей? Если самцу фальшивые мышцы обходятся дешевле настоящих, половой отбор должен сохранять гены, детерминирующие развитие фальшивых мышц. Пройдет, однако, немного времени, и контротбор создаст самок, способных распознать обман. Исходное допущение Захави состоит в том, что лживая сексуальная реклама в конечном итоге будет разоблачена. Поэтому он делает заключение, что удачи добьются те самцы, которые не прибегают к лживой рекламе, а ощутимо демонстрируют, что они не обманщики. Если речь идет о крепких мышцах, то самцы, которые создают просто видимость таких мышц, вскоре будут разоблачены самками. Но самец, который путем действий, эквивалентных поднятию гирь или отжиманиям от пола, демонстрирует наличие у него действительно крепких мышц, сумеет убедить в этом самок. Иными словами, как считает Захави, настоящий мужчина должен не только казаться высококачественным самцом, но и быть им на самом деле, иначе его не признают скептически настроенные самки. Поэтому в процессе эволюции могут возникнуть только такие демонстрации, которые соответствуют истинным возможностям самца.

Допустим. Но теперь следует перейти к той части теории Захави, которую буквально невозможно проглотить. Он полагает, что хвосты райских птиц и павлинов, огромные рога оленей и другие признаки, подверженные половому отбору, которые всегда казались парадоксальными, поскольку они создают очевидные помехи своим обладателям, возникли в процессе эволюции именно потому, что они создают помехи. Самец с длинным и громоздким хвостом демонстрирует самкам свое мужество, доказывая это тем, что несмотря на такой хвост, он выжил. Представьте себе женщину, наблюдающую за двумя мужчинами, которые бегут наперегонки. Если они достигают финиша одновременно, но при этом один из них умышленно взвалил себе на плечо мешок с углем, то женщина естественно придет к заключению, что мужчина с мешком на самом деле бегает лучше.

Я не верю в эту теорию, хотя мой скептицизм сильно поуменьшился с тех пор, как я услышал о ней впервые. Как я указывал в то время, из нее должна логически вытекать эволюция одноногих и одноглазых самцов. Захави – выходец из Израиля – немедленно отпарировал: “У некоторых из наших лучших генералов только один глаз”. Это не снимает, по-видимому, присущего теории гандикапа фундаментального противоречия. Если гандикап подлинный – а для теории чрезвычайно существенно, чтобы он был подлинным, – то в таком случае сам этот гандикап обусловит проигрыш потомка с такой же неотвратимостью, с какой он может привлечь самок. В любом случае важно, чтобы гандикап не передавался по наследству дочерям.

Если перевести теорию гандикапа на язык генов, получится примерно следующее. Ген, детерминирующий развитие у самца того или иного гандикапа, например длинного хвоста, становится более многочисленным в генофонде, потому что самки предпочитают самцов, обладающих гандикапами. Самки выбирают самцов с гандикапами, потому что частота в генофонде генов, заставляющих их делать это, также повышается. Это происходит потому, что самки, которых привлекают самцы, имеющие гандикапы, будут автоматически выбирать самцов с хорошими генами по другим параметрам, поскольку эти самцы дожили до зрелого возраста, несмотря на гандикап. Эти хорошие “другие” гены обеспечат преимущество телам их детей, которые поэтому выживут и продолжат распространение как генов, детерминирующих сам гандикап, так и генов, определяющих выбор самцов с гандикапом. При условии, что гены, детерминирующие сам гандикап, экспрессируются только у сыновей, точно так же, как гены, детерминирующие выбор самцов с гандикапом, – только у дочерей, эта теория, возможно, могла бы работать. До тех пор, пока она формулируется только на словах, мы не можем быть уверены, что она будет работать. Применимость подобной теории легче оценить, представив ее в виде математической модели. До сих пор математическим генетикам не удавалось создать работающую модель, основанную на принципе гандикапа. Возможно, он не поддается моделированию, а может быть, пытавшиеся сделать это генетики недостаточно сообразительны. Поскольку один из них – это Мейнард Смит, то я склоняюсь к первому варианту.

Если самец демонстрирует превосходство над другими самцами таким образом, что не связывает себя при этом преднамеренно никакими гандикапами, никто не будет сомневаться в том, что он мог бы усиливать таким образом свой генетический успех. Так, морские слоны завоевывают и удерживают свои гаремы не потому, что они эстетически привлекательны для самок, а просто потому, что они могут побить любого самца, который попытается приблизиться к гарему. Властители гаремов побеждают в драках уже хотя бы по той очевидной причине, что именно они сумели завладеть гаремом и сохранить его. Захватчики нечасто побеждают в драках, потому что если бы они были способны побеждать, они сделали бы это раньше. Любая самка, спаривающаяся только с владельцем гарема, связывает таким образом свои гены с самцом, который достаточно силен, чтобы отбить неоднократные посягательства со стороны многочисленных отчаявшихся холостяков. В случае удачи ее сыновья унаследуют способность своего отца владеть гаремом. На практике у самки морского слона нет больших возможностей для выбора, потому что властитель гарема изобьет ее, если она вздумает от него уйти. Сохраняется, однако, принцип, что самки, выбирающие себе в партнеры тех самцов, которые побеждают в драках, могут тем самым дать преимущество своим генам. Как мы видели, известны примеры, когда самки предпочитают спариваться с самцами, владеющими территорией, и с самцами, имеющими высокий статус в иерархической структуре сообщества.

Все сказанное до сих пор в этой главе сводится к тому, что наблюдаемые у животных разнообразные типы системы скрещивания – моногамия, промискуитет, гаремы и другие – можно объяснить на основе конфликта интересов самок и самцов. Каждая самка и каждый самец “хочет” максимизировать свой вклад, вносимый в размножение за всю жизнь. Вследствие фундаментальных различий между размерами и числом сперматозоидов и яиц самцы вообще отличаются склонностью к промискуитету и отсутствием тенденции к заботе о потомстве. Самки пытаются противодействовать этому с помощью двух уловок, которые я назвал стратегией Домашнего уюта и стратегией Настоящего мужчины. Склонность самок пользоваться той или другой из этих стратегий, а также характер реакции на них самцов зависят от экологических особенностей данного вида. На самом деле между указанными стратегиями существует ряд переходов, и, как мы видели, у некоторых видов отец заботится о детенышах даже больше, чем мать. Нас здесь не интересуют детали, относящиеся к отдельным видам животных, так что я не буду обсуждать обстоятельства, от которых может зависеть предрасположенность данного вида именно к той, а не к другой системе размножения. Вместо этого мы рассмотрим различия, обычно наблюдаемые между самцами и самками вообще, и их возможные интерпретации. Поэтому я не буду привлекать внимание к тем видам, у которых различия между полами незначительны, так как это обычно те виды, у которых самки отдают предпочтение стратегии Домашнего уюта.

Прежде всего, тенденция к сексуально притягательным броским окраскам наблюдается обычно у самцов, тогда как самки чаще окрашены в тусклые серо-коричневые тона. Как самцы, так и самки стараются избежать нападения хищников, и поэтому отбор должен оказывать на тех и других некоторое давление, направленное на создание у обоих полов неприметной окраски. Яркая окраска привлекает хищников не меньше, чем половых партнеров. На уровне генов это означает, что гены, детерминирующие яркую окраску, с большей вероятностью закончат свое существование в желудках хищников, чем гены тусклой окраски. Но вместе с тем для генов тусклой окраски вероятность быть представленными в следующем поколении меньше, чем для генов яркой окраски, потому что тускло окрашенным индивидуумам трудно привлечь к себе брачного партнера. Таким образом, здесь действуют два противоборствующих селективных фактора: хищники, изымающие из генофонда гены яркой окраски, и брачные партнеры, изымающие гены неприметной окраски. Как и во многих других случаях, эффективные машины выживания можно рассматривать как некий компромисс между противоборствующими давлениями отбора. В данный момент нас интересует различие, очевидно существующее между компромиссом, оптимальным для самца, и компромиссом, оптимальным для самки. Конечно, существование такого различия вполне совместимо с нашим взглядом на самцов как на азартных игроков, играющих по-крупному. Поскольку на каждую яйцеклетку, производимую самкой, самец производит много миллионов сперматозоидов, число сперматозоидов в популяции во множество раз выше числа яиц. Поэтому для каждой яйцеклетки вероятность принять участие в слиянии гораздо больше, чем для каждого сперматозоида. Яйцеклетки – относительно более ценный ресурс, а поэтому для того, чтобы обеспечить их оплодотворение, самке не надо обладать такой сексуальной привлекательностью, какая нужна самцу. Самец вполне способен послужить производителем всех детенышей, рождающихся в обширной популяции самок. Даже если самец проживет недолго из-за того, что его яркий хвост привлекает к нему хищников или же не дает ему выбраться из густых зарослей, он может успеть стать отцом очень многих детенышей, прежде чем погибнет. Непривлекательный или тускло окрашенный самец может прожить столь же долго, как самка, но детей у него будет мало и его гены не будут переданы следующим поколениям. Что выиграет самец, если он завоюет весь мир, но утратит свои бессмертные гены?

Другое распространенное половое различие состоит в том, что самок больше заботит вопрос о том, с кем они спариваются, чем самцов. Одна из причин этого беспокойства как у самцов, так и у самок объясняется необходимостью избежать спаривания с представителем иного вида. Гибридизация нежелательна по ряду причин. В некоторых случаях, как при копуляции человека с овцой, зародыш вообще не образуется, так что никаких потерь не происходит. Однако при скрещиваниях между представителями более близких видов, например между лошадью и ослом, потери, во всяком случае для партнера женского пола, могут быть значительными. Вполне вероятно, что в матке лошади начнет развиваться зародыш, которого ей придется вынашивать в течение одиннадцати месяцев. Ей придется не только израсходовать значительную долю своего общего родительского вклада в форме питательных веществ, поглощаемых зародышем через плаценту, а впоследствии и в форме молока, но главным образом потерять много времени, которое можно было бы потратить на выращивание других детенышей. А когда рожденный ею мул достигает зрелости, оказывается, что он стерилен. По-видимому, это происходит потому, что хотя хромосомы лошади и хромосомы осла достаточно сходны, чтобы сотрудничать в построении здорового и сильного тела мула, они недостаточно сходны, чтобы совместно проделать мейотические деления. Какой бы ни была истинная причина, очень значительный вклад матери в выращивание мула с точки зрения ее генов совершенно бессмыслен. Кобылы должны быть очень осмотрительными, чтобы спариваться непременно с жеребцом, а не с ослом. Если перейти на генетический язык, то любой лошадиный ген, который говорит: “Тело! Если ты – самка, спаривайся с любым самцом, будь то осел или лошадь”, может оказаться в тупике – в теле мула, а материнский вклад в этого маленького мула нанесет значительный урон ее возможностям выращивать фертильных лошадей. Что касается самца, то его потери в случае спаривания с представителем чужого вида меньше, и хотя он при этом может ничего не выиграть, есть основания предполагать, что самцы уделяют меньше внимания выбору сексуальных партнеров. Во всех изученных случаях это подтвердилось.

Основания для беспокойства имеются даже при спаривании с представителями своего вида. При близкородственном спаривании, как при гибридизации, могут возникать вредные генетические эффекты, на этот раз из-за перехода летальных и полулетальных рецессивных генов в гомозиготное состояние. И снова самки теряют при этом больше, чем самцы, поскольку их вклад в каждого детеныша больше. Там, где существуют запреты на кровосмешение, следует ожидать, что женщины будут соблюдать их строже, чем мужчины. Если допустить, что активным инициатором кровосмесительной связи скорее будет старший из партнеров, то следует ожидать, что среди подобных союзов чаще должны встречаться такие, в которых мужчина старше женщины. Например, связи отец-дочь должны встречаться чаще, чем мать-сын, а связи брат-сестра должны иметь промежуточную частоту.

Самцы, вероятно, более склонны к промискуитету, чем самки. Поскольку самка продуцирует ограниченное число яиц с относительно низкой частотой, она мало выигрывает от большого числа копуляций с разными самцами. Самцу же, который способен ежедневно производить миллионы сперматозоидов, напротив, во всех отношениях выгодно спариваться как можно больше с разными партнерами. Излишние копуляции, даже если затраты на них ограничиваются незначительными потерями времени и энергии, не приносят самке никаких положительных результатов. В отличие от этого самец, сколько бы и с каким бы множеством самок он ни спаривается, никогда не считает, что этого достаточно: для него слово “излишек” лишено смысла.

При обсуждении эволюционных проблем, подобных рассмотренным в этой главе, наши мысли невольно обращаются к человеку и к нашему собственному опыту. Представление о самках, отказывающихся от спаривания до тех пор, пока самец не предоставит каких-то доказательств длительной верности, звучит привычным мотивом. Это может означать, что женщины предпочитают стратегию Домашнего уюта, а не стратегию Настоящего мужчины. Во многих цивилизациях нормой является моногамия. В нашем обществе вклад обоих родителей в потомков велик и неравноценность его неочевидна. Несомненно, на плечи матери ложится большая часть непосредственной заботы о детях, но отцам нередко приходится много трудиться, чтобы заработать деньги, вкладываемые в выращивание и воспитание детей. Существуют, однако, и такие общества, в которых практикуется промискуитет, а во многих узаконено многоженство, то есть гаремы. Такое удивительное разнообразие наводит на мысль, что образ жизни людей в значительной степени определяется культурой, а не генами. Возможно, тем не менее, что мужчины обладают склонностью к промискуитету, а женщины – к моногамии, как можно было бы предсказать на основании эволюционных соображений. Какая из этих двух тенденций возьмет верх в каждом обществе, зависит от особенностей культурных факторов, подобно тому как у разных видов животных это зависит от экологических факторов.

Одна особенность человеческого общества представляется явно аномальной – речь идет о сексуальном рекламировании. Как мы видели, исходя из эволюционных соображений, следует ожидать, что в тех случаях, когда между полами существуют различия, себя рекламируют самцы, а самки бывают невзрачными. Современный западный мужчина несомненно представляет собой в этом отношении исключение. Конечно, некоторые мужчины одеваются кричаще, а некоторые женщины бесцветно, однако не вызывает сомнений, что в нашем обществе эквивалент павлиньего хвоста демонстрируют женщины. Они красятся и приклеивают себе искусственные ресницы. Мужчины, если не считать актеров, обычно этого не делают. Женщины явно уделяют больше внимания своему внешнему виду, и их поощряют к этому журналы. Журналы для мужчин меньше заботятся о сексуальной привлекательности своей аудитории, а мужчина, проявляющий повышенный интерес к своей внешности и одежде, скорее всего вызовет подозрение как у мужчин, так и у женщин. Описывая в разговоре ту или иную женщину, вполне естественно подчеркнуть ее сексуальную привлекательность или отсутствие оной, независимо от того, говорит ли о ней мужчина или женщина. Прилагательные, используемые при описании мужчины, скорее всего не будут иметь никакого отношения к сексу.

В свете этих фактов биолог будет вынужден заподозрить, что в человеческом обществе женщины конкурируют за мужчин, а не наоборот. Говоря о райских птицах, мы решили, что самки у них невзрачные, потому что им не нужно конкурировать за самцов. А самцы имеют яркую окраску и афишируют себя, так как на самок большой спрос и они могут позволить себе быть разборчивыми. Спрос на самок райских птиц объясняется тем, что яйцеклетки – более ограниченный ресурс, чем сперматозоиды. Что же случилось с современным западным мужчиной? Действительно ли он превратился в тот пол, которого домогаются, на который есть спрос, пол, который может позволить себе быть разборчивым? Если это так, то почему?

 

 

Глава 10. Почеши мне спину, а я тебя оседлаю

Мы рассмотрели различные взаимодействия между машинами выживания, принадлежащими к одному и тому же виду: взаимодействия между родителями и детьми, половые и агрессивные взаимодействия. Однако взаимодействия между животными имеют ряд удивительных аспектов, которые, очевидно, не подпадают ни под какую из этих рубрик. Один из таких аспектов – склонность многих животных к групповому образу жизни. Птицы собираются в стаи, насекомые роятся, рыбы объединяются в косяки, киты – в стада, млекопитающие, обитающие на равнинах, образуют стада или охотятся, собираясь в стаи. Все эти скопления животных состоят обычно из представителей лишь одного вида, но встречаются и исключения. Зебры часто держатся вместе с гну, а иногда можно встретить смешанные стаи птиц.

Перечень предполагаемых преимуществ, которые может извлечь эгоистичный индивидуум из группового образа жизни, составляет довольно пеструю смесь. Я не собираюсь рассматривать весь список, а коснусь лишь некоторых моментов. При этом я вернусь к приведенным в главе 1 примерам поведения, кажущегося альтруистичным, которые я обещал объяснить в дальнейшем. Это приведет нас к рассмотрению общественных насекомых, без которых ни одно изложение проблемы альтруизма у животных не было бы полным. Наконец, в довольно разнородном материале этой главы я коснусь важной идеи взаимного альтруизма – принципа “Ты почешешь мою спину, а я почешу твою”.

Если животные живут вместе, образуя группы, их гены должны извлекать из такого объединения больше пользы, чем они вкладывают в него. Жертва, которую может изловить стая гиен, настолько крупнее той, которую каждая гиена могла бы одолеть в одиночку, что каждому эгоистичному индивидууму выгодно охотиться стаей, хотя при этом и приходится делиться добычей. Вероятно, по сходным причинам некоторые пауки объединенными усилиями строят большую общую паутину. Королевские пингвины сохраняют тепло, прижимаясь друг к другу: у каждого при этом атмосферным воздействиям подвергается меньшая часть поверхности тела, чем если бы они держались поодиночке. Рыба, плывущая позади другой рыбы, получает некоторое гидродинамическое преимущество благодаря турбулентности потока, создаваемого впереди плывущей рыбой. Это, возможно, одна из причин, по которой рыбы собираются в косяки. Аналогичная уловка, связанная с турбулентностью и известная участникам велогонок, может служить объяснением V-образной формы птичьих стай. По всей вероятности, птицы вступают в конкуренцию, стараясь избежать невыгодного положения во главе стаи. Возможно, птицы становятся вожаками поневоле поочередно – своего рода запоздалый взаимный альтруизм, который мы обсудим в конце этой главы.

Многие из предполагаемых преимуществ группового образа жизни связаны с тем, что при этом легче избежать нападения хищников. Одна из такого рода теорий была изящно сформулирована Уильямом Д. Гамильтоном в работе “Геометрия для эгоистичного стада”. Во избежание возможных недоразумений я должен подчеркнуть, что под “эгоистичным стадом” он имел в виду “стадо эгоистичных индивидуумов”.

И снова мы начинаем с простой “модели”, которая, несмотря на свою абстрактность, поможет понять реальный мир. Допустим, что за животными определенного вида охотится некий хищник, который всегда стремится напасть на ближайшего к нему представителя вида-жертвы. С точки зрения хищника такая стратегия разумна, поскольку она позволяет понизить затраты энергии. С точки зрения жертвы из этой стратегии вытекает интересное следствие: каждая жертва будет постоянно стараться вести себя так, чтобы не оказаться ближе всех к хищнику. Если жертве удается обнаружить хищника заранее, она просто убегает. Но если хищник появляется неожиданно, например из высокой травы, каждая жертва может все же уменьшить свои шансы оказаться ближе всех к хищнику. Можно представить, что каждая жертва как бы окружена “зоной опасности”. Эта зона определяется как участок, каждая точка которого ближе к данному индивидууму, чем к любому другому. Например, если жертвы перемещаются на некотором расстоянии друг от друга, образуя правильную геометрическую фигуру, то зона опасности вокруг каждой из них (если только она не находится с краю) может иметь примерно шестиугольную форму. Если хищник затаился в шестиугольной зоне опасности, окружающей индивидуума A, то последний, по всей видимости, будет съеден. Особенно уязвимы индивидуумы, находящиеся по краям стада, так как их зона опасности не ограничивается относительно небольшим шестиугольником, а включает в себя обширную область, примыкающую к его открытой стороне.

Ясно, что разумный индивидуум будет стараться, чтобы его зона опасности была как можно меньше. Прежде всего он будет избегать находиться на краю стада. Оказавшись с краю, он немедленно начнет пытаться переместиться к центру. К сожалению, кто-нибудь всегда должен находиться с краю, но каждый индивидуум старается, чтобы этим “крайним” оказался не он! Происходит непрерывная миграция индивидуумов от периферии к центру. Если стадо вначале было рыхлым и разбросанным, то вскоре оно сбивается в плотную массу в результате внутренней миграции. Даже если изначально в рамках нашей модели не отмечалось никакой тенденции к агрегации и жертвы были рассеяны беспорядочно, каждый индивидуум будет охвачен эгоистичным стремлением сократить свою зону опасности, пытаясь занять место в промежутке между другими индивидуумами. Это быстро приведет к образованию агрегаций, которые будут становиться все более плотными.

Очевидно, в реальной жизни тенденция к образованию скоплений будет ограничиваться давлениями, направленными в противоположную сторону: иначе все индивидуумы сбились бы в одну извивающуюся кучу! Тем не менее модель эта представляет интерес, так как показывает, что даже исходя из очень простых допущений можно получить агрегацию. Предлагались и другие, более сложные модели. Тот факт, что они ближе к реальности, не умаляет ценности более простой гамильтоновской модели, помогающей нам размышлять о проблеме агрегации у животных.

Модель эгоистичного стада сама по себе не допускает кооперативных взаимодействий. В ней нет места альтруизму – только эгоистичная эксплуатация каждого индивидуума каждым другим индивидуумом. Но в реальной жизни случается, что индивидуумы, по-видимому, предпринимают активные шаги к охране других членов группы от хищников. Это сразу заставляет вспомнить о криках тревоги у птиц. Они несомненно служат сигналами тревоги, поскольку побуждают услышавших их индивидуумов немедленно постараться скрыться. Никто не предполагает, что кричавшая птица пытается отвести хищника от своих собратьев. Она просто сообщает им о близости хищника – предостерегает их. Тем не менее, по крайней мере на первый взгляд, акт подачи сигнала представляется альтруистичным, потому что он привлекает внимание хищника к подающей его птице. Такое заключение косвенно можно сделать на основании одного обстоятельства, подмеченного Питером Р. Марлером. Физические характеристики крика тревоги, по-видимому, идеальны для того, чтобы затруднить его локализацию. Если бы инженера-акустика попросили создать такой звук, чтобы хищнику было трудно локализовать его источник, он предложил бы нечто, весьма похожее на крики тревоги мелких певчих птиц. В природе подобные характеристики этих криков несомненно были выработаны естественным отбором, а что это означает – нам известно. Это означает, что множество индивидуумов погибло из-за того, что их крики тревоги были недостаточно совершенны. Издавание криков тревоги, очевидно, сопряжено с определенной опасностью. Теория эгоистичного гена обязана указать на какое-то убедительное преимущество, которое дает подача сигналов тревоги и которое достаточно значительно, чтобы перевешивать опасность.

В сущности это не очень трудно. О сигналах тревоги у птиц столько раз писали как о весьма “щекотливых” для дарвиновской теории, что придумывать для них объяснения стало чем-то вроде спорта. В результате мы теперь располагаем таким количеством хороших объяснений, что трудно вспомнить, из-за чего, собственно, разгорелись страсти. Совершенно очевидно, что если в стае может находиться некоторое число близких родственников, то ген, детерминирующий способность подавать сигналы тревоги, может процветать в генофонде, поскольку он с высокой вероятностью имеется в телах некоторых из спасенных индивидуумов. Это остается справедливым, даже если индивидуум, подающий сигнал, дорого платит за свой альтруизм, привлекая к себе внимание хищника.

Если вас не удовлетворяет эта идея в духе кин-отбора, то остается еще много теорий, из которых можно выбирать. Есть много способов, с помощью которых эгоистичный индивидуум может извлечь пользу для себя, предупреждая собратьев криком тревоги. Триверс высказал одну за другой пять хороших идей, но я считаю две собственные идеи, пожалуй, более убедительными.

Первую из них я называю теорией “кей-ви”, от латинского слова cave (“берегись”), все еще используемого школьниками, чтобы предупредить о приближении начальства. Эта теория пригодна для птиц, затаившихся в густой траве, которые, почуяв опасность, замирают, припав к земле. Представьте себе стайку таких птиц, кормящихся в поле. На некотором расстоянии от них пролетает ястреб. Он еще не заметил стайку и не летит прямо на нее, однако есть опасность, что его зоркие глаза обнаружат птиц в любой момент и что он нападет на них. Допустим, что один из членов стайки заметил ястреба, но другие пока не знают о приближении хищника. Этот остроглазый индивидуум немедленно припадет к земле и застынет на месте. Это, однако, мало ему поможет, потому что его товарищи не пытаются скрыться, а продолжают шуметь и двигаться. Любой из них может привлечь внимание ястреба, и тогда всей стайке грозит беда. С чисто эгоистичной точки зрения наилучшая политика для индивидуума, первым заметившего ястреба, состоит в том, чтобы быстро прошипеть предупреждение всем остальным, заставив их утихомириться и тем самым уменьшить вероятность того, что они невольно могут привлечь ястреба к тому месту, где находится он сам.

Другую теорию, о которой мне хочется сказать, можно назвать теорией “Никогда не расстраивай рядов”. Она применима к тем видам птиц, которые, заметив приближение хищника, улетают прочь, например взлетают на дерево. Представим себе снова, что одна из стайки кормящихся на дереве птиц заметила хищника. Что ей делать? Она может просто улететь прочь, не предостерегая остальных. Но при этом она окажется предоставленной самой себе, а не будет частью относительно анонимной стайки. На самом деле известно, что ястребы преследуют одиноких голубей, но если бы даже этого не было, имеется множество теоретических причин, позволяющих считать, что расстройство рядов равносильно самоубийству. Даже если другие птицы последуют за индивидуумом, первым покинувшим стайку, он временно расширит свою зону опасности. Независимо от того, верна эта теория Гамильтона или нет, если птицы предпочитают держаться стайками, то это, очевидно, дает им какое-то важное преимущество, иначе они бы этого не делали. Каким бы ни было это преимущество, индивидуум, покидающий стаю раньше других, лишается, по крайней мере частично, этого преимущества. Если наблюдательная птица не должна расстраивать рядов, то что же ей следует делать? Быть может, просто продолжать вести себя так, будто ничего не случилось, и полагаться на защиту, которую дает ей членство в стае? Но это тоже сопряжено с серьезным риском. Она остается при этом на виду и весьма уязвима. Гораздо безопаснее было бы оказаться на дереве. И в самом деле, наилучшей стратегией было бы взлететь на дерево, но при условии, что все остальные поступят так же. При этом она не останется в одиночестве и не лишится преимуществ, которые предоставляет индивидууму членство в стае, но получит выгоду, перелетев в более безопасное место. Мы снова убеждаемся, что предостерегающий сигнал служит чисто эгоистичным целям. Эрик Л. Чарнов и Джон Р. Кребс выдвинули сходную теорию, в которой они заходят так далеко, что пользуются словом “манипуляция”, описывая значение действий птицы, подающей сигнал тревоги, для остальных членов ее стаи. Как все это далеко от чистого бескорыстного альтруизма!

На первый взгляд эти теории могут показаться несовместимыми с утверждением о том, что индивидуум, подающий сигнал тревоги, подвергает себя опасности. На самом деле здесь нет несовместимости. Индивидуум подверг бы себя большей опасности, не подавая сигнала. Некоторые индивидуумы погибали, потому что они подавали сигналы тревоги, особенно если эти сигналы было легко локализовать. Другие погибали, потому что не подавали сигналов. “Кей-ви”-теория и теория “Никогда не расстраивай рядов” – лишь два из многих объяснений, почему это происходит.

А как же быть со “стоттингом” у газели Томсона, о которой я упоминал в главе 1 и кажущееся самоубийственным поведение которой заставило Ардри категорически утверждать, что его можно объяснить только групповым отбором? Это гораздо более серьезный вызов теории эгоистичного гена. Крики тревоги у птиц выполняют свою роль, но птицы явно стараются, чтобы они были как можно более осторожными и не привлекали внимания хищника. Совсем иной характер носят прыжки в высоту (“стоттинг”) у газели. Они производят впечатление откровенной провокации. Газели ведут себя так, будто намеренно привлекают внимание хищника, будто дразнят его. Это наблюдение привело к созданию восхитительно смелой теории. Предтечей этой теории были идеи Н. Смайта, но, доведенная до своего логического завершения, она, несомненно, принадлежит Амоцу Захави.

Теорию Захави можно изложить следующим образом. Решающую роль в ней играет идея о том, что “стоттинг” – это сигнал, адресованный вовсе не другим газелям, а хищникам. Его действительно замечают другие газели, и он влияет на их поведение, но это между прочим, так как он выработан отбором прежде всего как сигнал для хищника. В переводе на язык людей он примерно означает: “Смотри, как высоко я могу прыгнуть! Видишь, какая я ловкая и здоровая газель! Ты не сможешь поймать меня. Гораздо разумнее попытаться поймать мою соседку, которая не прыгает так высоко”. Выражаясь менее антропоморфно, гены, детерминирующие способность к высоким демонстративным прыжкам, вряд ли будут съедены хищниками, потому что хищники обычно выбирают жертву, которая выглядит слабее. Многие хищники среди млекопитающих особенно склонны охотиться за старыми и больными животными. Индивидуум, прыгающий на большую высоту, демонстрирует, сильно преувеличивая действительность, что он и не старый, и не больной. Согласно этой теории, такое поведение отнюдь не альтруистично. Оно несомненно эгоистично, так как его цель состоит в том, чтобы убедить хищника охотиться за другим. Происходит в некотором роде соревнование, чтобы выяснить, кто прыгает выше всех. Проигравший становится жертвой хищника.

Другой пример, к которому я обещал вернуться, – пчелы-камикадзе, жалящие похитителей меда, но идущие при этом почти на верное самоубийство. Медоносная пчела – это просто одно из насекомых с высокоразвитым общественным образом жизни. К общественным насекомым относятся также осы, муравьи и термиты. Я хочу рассмотреть общественных насекомых вообще, а не только пчел-самоубийц. Подвиги общественных насекомых легендарны, в особенности их поразительные свершения в сфере сотрудничества и их кажущийся альтруизм. Типичными примерами совершаемых ими чудес самоотверженности служат их самоубийственные нападения на похитителей меда. У некоторых муравьев существует каста “медовых бочек” – рабочих особей с чудовищно раздутым брюшком, набитым пищей. Они свешиваются с потолка камеры, напоминая огромные лампочки, и единственная их функция состоит в том, чтобы служить складами пищи для других рабочих. С человеческой точки зрения они даже и не живут на свете как индивидуумы. Их индивидуальность подчинена, по-видимому, благу сообщества. Сообщество муравьев, пчел или термитов достигает некой индивидуальности более высокого уровня. Распределение пищи настолько усовершенствовано, что можно говорить о своего рода общинном желудке. Передача информации с помощью химических сигналов и знаменитых “танцев” пчел столь эффективна, что сообщество ведет себя подобно некой единице с собственной нервной системой и органами чувств. Вторгающихся чужаков опознают и изгоняют с той же избирательностью, с какой действует иммунная система индивидуального организма. Температура в улье довольно высокая и регулируется почти с такой же точностью, как температура человеческого тела, хотя отдельная пчела не является “теплокровным” животным. Наконец, и это самое важное, аналогия распространяется и на размножение. Большинство индивидуумов в сообществе насекомых составляют стерильные рабочие. “Линия зародышевых клеток”, обеспечивающая непрерывность бессмертных генов, проходит через тела репродуктивных индивидуумов, составляющих меньшинство. Это аналоги наших собственных репродуктивных клеток в семенниках и яичниках. А стерильные рабочие – аналоги наших печени, мышц и нервных клеток.

Самоубийственное поведение и другие формы альтруизма и сотрудничества между рабочими перестают вызывать удивление, как только мы согласимся с тем, что они стерильны. Тело нормального животного управляется таким образом, чтобы обеспечить выживание его генов как в результате рождения потомков, так и в результате заботы о других индивидуумах, содержащих те же гены. Самоубийство в заботе о других индивидуумах несовместимо с рождением в будущем собственных потомков. Поэтому самопожертвование возникает в процессе эволюции редко. Но у рабочей пчелы не бывает собственных потомков. Все ее усилия направлены на сохранение своих генов путем заботы о других родственных индивидуумах, не являющихся ее собственными потомками. Гибель одной стерильной рабочей пчелы наносит ее генам не более серьезный урон, чем сбрасывание одного листа – генам дерева.

Рассматривая поведение общественных насекомых, невольно начинаешь впадать в мистику, хотя реальных оснований для этого нет. Следует разобраться немного подробнее, насколько хорошо оно вписывается в теорию эгоистичного гена и, в частности, в том, как она объясняет эволюционное происхождение такого экстраординарного явления, как стерильность рабочих пчел, которая определяет столь многое.

Колония общественных насекомых – это большая семья, состоящая из потомков одной матери. Рабочие особи, которые никогда не размножаются, часто делятся на несколько каст: мелкие рабочие, крупные рабочие, солдаты и такая высокоспециализированная каста, как “медовые бочки”. Репродуктивных самок называют матками, а репродуктивных самцов – трутнями. В более высокоразвитых сообществах репродуктивные особи никогда не несут иных функций, кроме размножения, но эту задачу они выполняют весьма эффективно. Обеспечение пищей и защита целиком ложатся на рабочих, которые, кроме того, заботятся о молоди. У некоторых видов муравьев и термитов сильно раздувшаяся матка, превратившаяся в гигантскую фабрику яиц, утрачивает почти всякое сходство с насекомым. Она в сотни раз крупнее рабочих и совершенно не способна двигаться. О ней непрерывно заботятся рабочие, которые обхаживают ее, кормят и переносят непрерывно откладываемые ею яйца в ячейки для выращивания молоди. Если такой чудовищной матке почему-либо приходится выйти из своей царской ячейки, то это превращается в парадный выезд: матка восседает на спинах целых эскадронов рабочих, которые еле тащатся под ее тяжестью.

В главе 7 говорилось о различии между рождением потомков и заботой о них. Было сказано, что в нормальных условиях при этом должны возникать смешанные стратегии, сочетающие в себе обе эти функции. В главе 5 показано, что возможны смешанные эволюционно стабильные стратегии двух общих типов. Либо поведение каждого индивидуума в данной популяции относится к смешанному типу – в этом случае в нем обычно разумно сочетаются функции рождения потомков и заботы о них; либо популяция разделена на индивидуумов двух разных типов – подобно тому, как при описанном ранее равновесии между Ястребами и Голубями. Эволюционно стабильное равновесие между функциями рождения потомков и заботы о них теоретически может быть достигнуто вторым способом, то есть разделением популяции на индивидуумов, рождающих потомков, и индивидуумов, заботящихся о них. Однако такая стратегия окажется эволюционно стабильной лишь в случае близкого родства последних с теми индивидуумами, о которых они заботятся. Это родство должно быть по крайней мере таким же близким, как если бы это были их собственные дети. Хотя подобное направление эволюции теоретически возможно, оно, по-видимому, смогло реализоваться только у общественных насекомых[51].

Для общественных насекомых характерно деление на два основных класса индивидуумов: одни рождают потомков, другие выращивают их. К первым относятся репродуктивные самцы и самки. Вторые – это рабочие, то есть стерильные самцы и самки у термитов и стерильные самки у всех других общественных насекомых. Как первые, так и вторые выполняют свои функции более эффективно, потому что им не приходится беспокоиться ни о чем другом. Но с чьей точки зрения это эффективно? Дарвиновской теории немедленно будет задан знакомый вопрос: “А какую выгоду получают при этом рабочие?”

Некоторые отвечают: “Никакую”. Они понимают, что матка поступает так, как ей угодно, управляя поведением рабочих с помощью химических воздействий в своих целях, то есть заставляя их заботиться о ее собственных многочисленных потомках. Это одна из разновидностей теории Александера о “манипуляции родителей”, которой мы касались в главе 8. Противоположная точка зрения состоит в том, что рабочие относятся к репродуктивным особям как к домашним животным, создавая все условия для того, чтобы они повышали свою продуктивность, то есть воспроизводили реплики генов рабочих. Конечно, машины выживания, продуцируемые маткой, не являются потомками рабочих, но это все же их близкие родственники. Именно Гамильтон высказал блестящую догадку, что рабочие (по крайней мере у муравьев, пчел и ос) на самом деле связаны с этими потомками более близким родством, чем сама матка! Это привело его, а впоследствии Роберта Л. Триверса и Хоупа Хейра, к одному из самых грандиозных триумфов теории эгоистичного гена. Они рассуждали следующим образом.

Насекомые, принадлежащие к отряду перепончатокрылых (Hymenoptera), – к ним относятся муравьи, пчелы и осы, – обладают крайне своеобразной системой определения пола. Термиты, не относящиеся к перепончатокрылым, не обладают этой особенностью. В гнезде перепончатокрылых обычно только одна половозрелая матка. В молодом возрасте она совершает единственный брачный вылет, запасаясь сперматозоидами на всю жизнь (десять лет и даже более). Эти сперматозоиды она использует постепенно для оплодотворения яиц во время их прохождения по половым путям. Однако оплодотворяются не все яйца. Из неоплодотворенных яиц развиваются самцы. Поэтому у самца нет отца и все клетки его тела содержат лишь один набор хромосом (все они получены от матери) вместо двух (одного от матери и одного от отца), как, например, у человека. Прибегая к предложенной в главе 3 аналогии, можно сказать, что у самца перепончатокрылых в каждой клетке содержится лишь по одному экземпляру каждого “тома” вместо обычных двух.

Что касается самки перепончатокрылого, то она нормальна в том смысле, что у нее есть отец и каждая клетка ее тела содержит обычный двойной набор хромосом. Превратится ли самка в рабочего или в матку, зависит не от ее генов, а от того, как ее выращивали. Это означает, что каждая самка несет полный набор генов, необходимый для того, чтобы стать маткой, и полный набор генов, необходимый для развития рабочего (или, вернее, наборы генов, детерминирующих каждую специализированную касту – рабочих, солдат и так далее). Какой набор генов будет реализован, зависит от условий, в которых выращивают самку, а в особенности – от питания.

Такова в общих чертах система определения пола у перепончатокрылых, хотя имеется много осложняющих обстоятельств. Нам неизвестно, как возникла эта необыкновенная форма полового размножения. Несомненно, тому были веские причины, однако пока нам следует относиться к ней как к любопытному факту биологии перепончатокрылых. Какими бы ни были первоначальные причины этого своеобразия, оно полностью разрушает изложенные в главе 6 четкие правила для вычисления коэффициента родства. Оно означает, что сперматозоиды отдельного самца вместо того, чтобы отличаться друг от друга, как у человека, совершенно одинаковы. В каждой клетке тела самца имеется лишь один, а не два набора генов. Поэтому каждый сперматозоид получает полный набор генов, а не пятидесятипроцентную выборку, и все сперматозоиды, продуцируемые данным самцом, идентичны. Постараемся теперь вычислить коэффициент родства между матерью и сыном. Если известно, что у данного самца имеется ген A, то какова вероятность наличия этого гена у его матери? Эта вероятность равна 100 %: у самца не было отца, все гены он получил от матери. Допустим теперь, что у некоей матки имеется ген B. Вероятность того, что у ее сына будет этот ген, составляет всего 50 %, поскольку у сына лишь половина генов матери. Это кажется противоречивым, но на самом деле противоречия здесь нет. Самец получает все свои гены от матери, но мать отдает сыну только половину своих генов. Разрешение этого кажущегося парадокса кроется в том, что клетки самца содержат лишь половину нормального числа генов. Нет смысла ломать голову над тем, чему равен “истинный” коэффициент родства – 1/2 или 1. Этот коэффициент – мера, придуманная человеком, и если в отдельных случаях он создает трудности, то следует отказаться от него и вернуться на исходные позиции. С точки зрения гена, находящегося в теле матки, вероятность наличия этого гена у одного из ее сыновей или дочерей равна 1/2. Поэтому с точки зрения матки ее потомки, независимо от их пола, находятся с ней в таком же близком родстве, как мать со своими детьми у человека.

Положение осложняется, когда дело доходит до сестер. Родные сестры не просто дочери одного и того же отца: зачавшие их сперматозоиды идентичны во всем. Поэтому сестры в том, что касается генов, полученных от родителей, равноценны однояйцевым близнецам. Если у одной самки имеется ген A, то она могла получить его либо от отца, либо от матери. Если она получила его от матери, то с вероятностью 50 % он имеется и у ее сестры. Но если он достался ей от отца, то вероятность наличия этого гена у ее сестры равна 100 %. Поэтому у перепончатокрылых коэффициент родства между родными сестрами равен не 1/2, как у других животных с обычным половым размножением, а 3/4.

Отсюда следует, что у перепончатокрылых самка связана со своими сестрами более тесным родством, чем со своими потомками как одного, так и другого пола[52]. По мнению Гамильтона (хотя он излагал его несколько иначе), вполне возможно, что это обстоятельство предрасполагает самку ухаживать за своей матерью как за эффективной машиной, производящей сестер. Ген, детерминирующий создание сестер косвенным образом, реплицируется быстрее, чем ген, детерминирующий непосредственное произведение на свет потомков. В результате в процессе эволюции возникла стерильность рабочих. Вероятно, нельзя считать случайностью, что истинно общественный образ жизни одновременно со стерильностью рабочих возникал у перепончатокрылых не менее, чем одиннадцать раз, и притом всякий раз независимо, но лишь единственный раз во всем остальном животном мире, а именно у термитов.

Здесь имеется, однако, подвох. Чтобы рабочие могли успешно ухаживать за своей матерью, всячески заботясь о ней как о машине, производящей сестер, они должны как-то сдерживать ее естественное стремление производить такое же число маленьких братьев. С точки зрения рабочего (напомним, что это самка) вероятность того, что каждый рабочий будет нести один определенный материнский ген, равна всего лишь 3/4. Поэтому если бы матке была предоставлена возможность производить репродуктивных потомков в равных долях, то заботы о ней не окупались бы, во всяком случае с точки зрения рабочих: все их труды не приводили бы к максимизации числа их драгоценных генов.

Триверс и Хейр понимали, что рабочие, очевидно, стараются сдвинуть соотношение полов в пользу самок. Взяв расчеты Фишера для оптимального соотношения полов (глава 9), они переработали их для особого случая перепончатокрылых. Оказалось, что стабильное соотношение вклада для матери составляет, как обычно, 1:1. Однако стабильное соотношение для сестры равно 3:1 в пользу сестер, а не братьев. Для самки перепончатокрылых наиболее эффективный способ воспроизводства своих генов состоит в том, чтобы воздерживаться самой от размножения, предоставив своей матери производить для нее репродуктивных сестер и братьев в соотношении 3:1. Если, однако, самка должна иметь собственных потомков, то лучшее, что она может сделать для блага своих генов, это рожать репродуктивных сыновей и дочерей в равном соотношении.

Как уже было показано, различие между маткой и рабочими не является генетическим. В том, что касается генов, эмбрион самки может стать либо рабочей особью, которая “желает” соотношения полов 3:1, либо маткой, “желающей” соотношения 1:1. Что же означает это “желание”? Оно означает, что ген, находящийся в теле матки, воспроизводит себя наилучшим образом, если это тело вносит равные вклады в производство репродуктивных сыновей и дочерей. Но тот же самый ген, если он находится в теле рабочей самки, будет воспроизводиться лучше всего, если он заставит мать этого тела рожать больше дочерей, чем сыновей. В действительности здесь нет парадокса. Ген должен наилучшим образом использовать имеющиеся в его распоряжении рычаги власти. Если он может оказать влияние на развитие тела, которому суждено превратиться в матку, то он, чтобы использовать это влияние, прибегнет к одной оптимальной стратегии. Если же он в состоянии повлиять на способ развития тела рабочего, то он использует для этого другую стратегию.

Это означает, что на “ферме” перепончатокрылых существует столкновение интересов. Матка “старается” вносить равные вклады в самцов и в самок. Рабочие пытаются сместить соотношение репродуктивных особей так, чтобы на каждого самца приходилось по три самки. Если мы вправе представить рабочих как фермеров, а матку – как племенную кобылу, то следует предполагать, что рабочие успешно достигнут желательного для них соотношения 3:1. Если же нет, если матка и в самом деле “царица”, а рабочие – ее рабы и послушные няньки в царских яслях, то следует ожидать соотношения 1:1, которое “предпочитает” матка. Кто побеждает в этом особом случае битвы поколений? Данная ситуация поддается проверке, которую и предприняли Триверс и Хейр, использовав большое число видов муравьев.

Среди соотношений полов интерес представляет соотношение репродуктивных самцов и самок. Периодически из гнезд муравьев происходят как бы выбросы крупных крылатых форм, отправляющихся в брачные полеты, после чего молодые матки предпринимают попытки основать новую семью. Эти-то крылатые формы и надо подсчитывать, чтобы оценить соотношение полов. У многих видов репродуктивные самцы и самки сильно различаются по размерам. Это осложняет дело, поскольку, как уже говорилось в главе 9, расчеты Фишера относительно оптимального соотношения полов строго приложимы не к числу самцов и самок, а к количеству вкладов в самцов и самок. Триверс и Хейр учли это, взвешивая муравьев. Они определяли соотношение полов по вкладам в репродуктивных индивидуумов у двадцати видов муравьев. Их результаты достаточно близки к соотношению 3:1, предсказанному теорией, то есть подтверждают, что командуют парадом рабочие муравьи[53].

Складывается впечатление, что у изученных муравьев в конфликте интересов “побеждают” рабочие. Это не слишком удивляет, поскольку тела рабочих, охраняющих питомники, в практическом отношении обладают большей силой, чем тела маток. Гены, пытающиеся подчинить себе мир через тела маток, не могут одолеть гены, властвующие над миром через тела рабочих. Интересно было бы найти какие-то особые обстоятельства, при которых матки могли бы обладать большей властью, чем рабочие. Триверс и Хейр поняли, что существует одно именно такое обстоятельство, которое можно использовать для критической проверки теории.

Оно связано с тем, что некоторые виды муравьев заводят себе рабов. У таких видов рабочие вовсе не занимаются своим обычным делом либо выполняют его плохо. Зато они очень хорошо умеют захватывать рабов. Настоящие войны, в которых большие армии противников дерутся насмерть, известны только у человека и у общественных насекомых. У многих видов муравьев специализированная каста солдат вооружена устрашающими челюстями и отдает все свое время сражениям за свою семью против армий других муравьев. Набеги за рабами – это просто вид военных действий. Охотники за рабами нападают на гнездо муравьев другого вида, убивают рабочих или солдат, которые его защищают, и уносят с собой расплод. Молодь вылупляется в гнезде своих поработителей и, “не понимая”, что попала в рабство, начинает действовать в соответствии со встроенными в ее нервную систему программами. Рабочие, захватывающие рабов, или солдаты продолжают совершать набеги за новыми рабами, а в их гнездах рабы выполняют повседневные функции, связанные с уборкой, фуражированием и уходом за молодью.

Рабы, конечно, находятся в счастливом неведении о том, что они не связаны родством ни с матерью, ни с молодью, за которой они ухаживают. Невольно они выращивают новые отряды рабовладельцев. Не может быть сомнений, что естественный отбор, действуя на гены рабского вида, благоприятствует “антирабским” адаптациям. Однако эти адаптации, по-видимому, недостаточно эффективны, потому что рабство оказалось широко распространенным явлением.

С рассматриваемых здесь позиций интерес представляет следу-ющее последствие рабства: матка вида, захватывающего рабов, получает возможность сдвигать соотношение полов в ту сторону, в которую “предпочитает”. Это связано с тем, что ее собственные, действительно рожденные ею потомки-захватчики рабов уже не имеют практической власти в яслях. Власть эта оказалась в руках рабов. Рабы “думают”, что ухаживают за собственными сибсами, и, надо полагать, делают все то, что им надлежало бы делать в собственных гнездах для достижения желаемого соотношения 3:1 – в пользу сестер. Но матка рабовладельческого вида в состоянии принять контрмеры, нейтрализовать которые рабы не могут, так как между ними и молодью нет никакого родства и они, соответственно, не подвергаются отбору.

Допустим, например, что у какого-то вида муравьев матки “пытаются” замаскировать яйца мужского пола, придавая им запах яиц женского пола. В нормальной ситуации естественный отбор поддержит любую тенденцию рабочих “разгадать” обман. Можно представить себе эволюционную битву, в которой матки постоянно “меняют код”, а рабочие “расшифровывают” его. Выиграет битву тот, кто сумеет передать следующему поколению больше своих генов через тела репродуктивных индивидуумов. Как мы убедились, побеждают обычно рабочие. Но когда код изменяет матка рабовладельческого вида, то среди рабочих-рабов не может произойти отбор на способность к его расшифровке, потому что ген, детерминирующий эту способность, не содержится ни в одном из репродуктивных индивидуумов, а следовательно, не может передаваться по наследству. Все репродуктивные индивидуумы принадлежат к рабовладельческому виду, то есть связаны родством с маткой, но не с рабами. Если гены рабов и попадают в каких-то репродуктивных индивидуумов, то последние непременно должны происходить из того гнезда, из которого были похищены сами эти рабы. Так что рабочие-рабы в лучшем случае будут заниматься расшифровкой кода, не имеющего к ним никакого отношения! Поэтому матки рабовладельческого вида могут безнаказанно изменять свои гены, отнюдь не рискуя, что гены, детерминирующие способность к расшифровке кода, будут переданы следующему поколению.

Результат этих сложных рассуждений сводится к тому, что у рабовладельческих видов соотношение вкладов в репродуктивных индивидуумов двух полов, очевидно, должно быть ближе к 1:1, а не к 3:1. Хоть в одном случае матка сможет поступать так, как ей угодно. Именно это и установили Триверс и Хейр, хотя они изучали только два рабовладельческих вида.

Должен подчеркнуть, что я несколько идеализировал эту историю. В жизни не все так просто и ясно. Например, самый хорошо знакомый нам вид общественных насекомых – медоносная пчела – ведет себя, казалось бы, совсем неправильно. Вклад в трутней значительно превышает у нее вклад в маток, что представляется нелепым с точки зрения как рабочих пчел, так и самой матки. Гамильтон предложил возможное решение этой загадки. Он указал, что когда пчелиная матка покидает улей, ее сопровождает большая толпа рабочих, которые помогают ей основать новую семью. Для родного улья эти рабочие потеряны навсегда, и затраченные на них ресурсы следует включить в стоимость размножения: на каждую матку, покидающую улей, необходимо произвести на свет большое число дополнительных рабочих. Вклады в этих дополнительных рабочих пчел следует рассматривать как часть вклада в репродуктивных самок. При вычислении соотношения полов дополнительных рабочих пчел следует приплюсовать к маткам. Так что в конечном счете это не такое уж серьезное затруднение для теории.

Большая проблема для этой элегантной теории возникает в связи с тем, что у некоторых видов молодая матка во время своего брачного полета спаривается не с одним, а с несколькими самцами. Это означает, что коэффициент родства между ее дочерьми в среднем ниже, чем 3/4, а в некоторых экстремальных случаях может даже приближаться к 1/4. Соблазнительно, хотя, возможно, не очень логично, рассматривать это как хитрый удар, наносимый матками рабочим. Можно было бы думать, что рабочие пчелы должны сопровождать матку в ее брачном полете, чтобы помешать ей спариваться больше одного раза. Но это никак не поможет собственным генам рабочих – только генам следующего их поколения. Среди рабочих как класса нет духа профессиональной солидарности. Каждый из них заботится лишь о собственных генах. Рабочей пчеле, быть может, и хотелось бы сопровождать свою мать, но ей не представилось такой возможности, поскольку она не была зачата в эти дни. Молодая матка, совершающая свой брачный полет, приходится имеющемуся на данный момент поколению рабочих пчел сестрой, а не матерью. Поэтому они будут на ее стороне, а не на стороне следующего поколения рабочих, которые приходятся им лишь племянницами. У меня закружилась голова, так что давно пора закрыть эту тему.

Я воспользовался аналогией с фермерством при описании отношения рабочих к их маткам у перепончатокрылых. Их ферма – это генная ферма. Рабочие используют свою мать как более эффективного, чем они сами, производителя копий их собственных генов. Гены сходят с конвейера, упакованные в контейнеры, называемые репродуктивными индивидуумами. Эту аналогию с фермой не следует путать с совершенно иного рода фермерством, которым занимаются общественные насекомые. Общественные насекомые задолго до человека обнаружили, что оседлый образ жизни и “земледелие” могут быть эффективнее охоты и собирательства.

Например, несколько видов муравьев в Новом Свете и независимо от них термиты в Африке разводят “грибные сады”. Наиболее хорошо изучены среди них так называемые муравьи-листорезы (или зонтичные муравьи) Южной Америки. Они трудятся необыкновенно успешно. В некоторых муравейниках листорезов обитает более двух миллионов муравьев. Гнезда листорезов состоят из переплетения переходов и галерей, широко раскинувшихся под землей на глубине трех метров и более. Роя эти туннели, муравьи выбрасывают на поверхность до сорока тонн земли. В подземных камерах помещаются грибные сады. Муравьи специально высевают грибы определенного вида на грядки из компоста, который они изготовляют, разжевывая листья на мелкие кусочки. Вместо того чтобы просто собирать листья и питаться ими, рабочие делают из них компост. Аппетит на листья у муравьев-листорезов гаргантюанский, что делает их опасными вредителями, но листья служат пищей не для них, а для выращиваемых ими грибов. В конечном счете муравьи собирают конидии грибов, которыми кормят своих личинок и питаются сами. Грибы расщепляют растительную ткань более эффективно, чем желудки самих муравьев. В этом и состоит выгода, которую извлекают из выращивания грибов муравьи. Возможно, что и грибам такая ситуация выгодна: хотя муравьи поедают конидии грибов, они распространяют их споры эффективнее, чем это делает механизм распространения, существующий у самих грибов. Кроме того, муравьи “пропалывают” свои сады, уничтожая грибы других видов. Это, вероятно, идет на пользу грибам, выращиваемым муравьями, так как устраняет конкуренцию. Можно даже говорить о существовании между муравьями и грибами отношений, основанных на взаимном альтруизме. Примечательно, что очень сходная система разведения грибов независимо возникла у термитов, не связанных с муравьями никаким родством.

Муравьи не только занимаются земледелием, но и держат домашних животных. Тли – в частности зеленая яблоневая тля и другие виды – высоко специализированы к высасыванию сока у растений. Они очень эффективно выкачивают соки из растительных тканей, но не переваривают их до конца. В результате тли выделяют жидкость, из которой питательные вещества экстрагированы лишь частично. Капельки богатой сахарами “медвяной росы”, или пади, выделяются на заднем конце тела с высокой скоростью – иногда за один час тля выделяет больше пади, чем весит сама. Обычно “роса” падает на землю (быть может, это та самая ниспосланная Провидением “манна”, о которой говорится в Ветхом Завете). Но муравьи некоторых видов перехватывают росу, как только она выходит из тела насекомого. Муравьи даже “доят” тлей, поглаживая задние части их тела усиками и лапками. В ответ на это тли в некоторых случаях, по-видимому, задерживают выделение своих капелек до тех пор, пока какой-нибудь муравей не погладит их, и даже втягивают капельку назад, пока муравей не будет готов принять ее. Высказывалось также мнение, что у некоторых тлей задняя часть тела на вид и на ощупь сходна с лицевой частью головы муравья, что повышает привлекательность тлей для муравьев. Какую выгоду извлекают из этой связи тли? По-видимому, муравьи защищают их от врагов. Подобно крупному рогатому скоту, тли живут в укрытиях, и те их виды, которых особенно эффективно используют муравьи, утратили свои обычные защитные механизмы. В некоторых случаях муравьи ухаживают за яйцами тлей в своих подземных гнездах, кормят молодь тлей – и, наконец, когда они вырастают, осторожно выносят их наверх, на охраняемые пастбища.

Взаимоотношения между представителями двух разных видов, выгодные для обоих, называют мутуализмом или симбиозом. Члены разных видов часто могут предложить друг другу много различных услуг, потому что каждый из них обладает различными “талантами”. Такого рода глубокая асимметрия может привести к эволюционно стабильным стратегиям, основанным на взаимовыгодной кооперации. Ротовой аппарат тлей приспособлен к высасыванию сока из растений, но для самозащиты такие ротовые части бесполезны. Муравьи же не способны высасывать соки из растений, но умеют драться. Отбор благоприятствовал сохранению в генофонде тлей генов, детерминирующих сотрудничество с муравьями.

Взаимовыгодные симбиотические отношения часто встречаются среди животных и растений. На первый взгляд лишайник кажется отдельным растением, как любое другое. Но на самом деле лишайник состоит из гриба и зеленой водоросли, находящихся в тесном симбиозе. Ни один из них не может существовать без другого. Если бы их единение стало еще чуть теснее, мы уже не могли бы говорить, что лишайник состоит из двух организмов. Быть может, существуют и другие организмы, состоящие из соединенных воедино представителей двух или нескольких видов, а мы просто этого не знаем? Может быть, к их числу относимся и мы сами?

 

В каждой из наших клеток имеются многочисленные тельца, называемые митохондриями. Митохондрии – это химические заводы, поставляющие большую часть необходимой нам энергии. Утрата нами митохондрий повлекла бы за собой смерть в течение нескольких секунд. Существует правдоподобное предположение, что по своему происхождению митохондрии являются симбиотическими бактериями, вступившими в союз с нашими клетками на очень ранних стадиях эволюции. Сходные предположения высказываются и относительно других маленьких телец, находящихся в наших клетках. Это одна из тех революционных идей, которые трудно принять сразу. К ним нужно привыкнуть, но время для этого настало. Я выдвигаю гипотезу, что в будущем мы примем более радикальную идею, согласно которой каждый из наших генов представляет собой симбиотическую единицу. Люди – это гигантские колонии симбиотических генов. Говорить о наличии настоящих доказательств в пользу этой идеи нельзя, но, как я старался показать в предыдущих главах, она в самом деле коренится в наших представлениях о характере действия генов у организмов с половым размножением. Однако вслед за этим логично допустить, что вирусы – это гены, оторвавшиеся от таких колоний, как человек. Вирусы состоят из чистой ДНК (или аналогичной самореплицирующейся молекулы), окруженной белковой оболочкой. Все они паразиты. Предполагается, что они возникли из “взбунтовавшихся” генов, которые освободились и теперь путешествуют из тела в тело по воздуху, а не более традиционным способом – в таких “экипажах”, как сперматозоиды и яйцеклетки. Если это так, мы могли бы с тем же успехом рассматривать себя как колонию вирусов. Некоторые из этих вирусов ведут себя как симбионты, переходя из тела в тело в сперматозоидах и яйцеклетках. Это наши обычные гены. Другие ведут паразитический образ жизни и путешествуют любыми доступными им способами. Если эта паразитическая ДНК перемещается в сперматозоидах и яйцеклетках, то она, возможно, и составляет тот “парадоксальный” избыток ДНК, о котором я упоминал в главе 3. Если же она перемещается по воздуху или же другими прямыми способами, ее называют “вирусом” в обычном смысле.

Все это, однако, спекуляции для будущего. В настоящее же время нас интересует симбиоз на высшем уровне: взаимоотношения между многоклеточными организмами, а не внутри них. Словом “симбиоз” принято обозначать ассоциации между представителями различных видов. Но теперь, когда мы старательно избегаем того, чтобы рассматривать эволюцию как процесс, направленный “на благо вида”, у нас, очевидно, нет логических оснований рассматривать ассоциации между представителями разных видов как нечто, отличное от ассоциаций между представителями одного и того же вида. В общем, взаимовыгодные ассоциации возникают в тех случаях, когда каждый партнер извлекает из них больше пользы, чем вкладывает в них. Это относится как к членам стаи гиен, так и к ассоциациям между такими резко различающимися организмами, как муравьи и тли или пчелы и растения. На практике не всегда удается различать случаи истинной двусторонней обоюдной выгоды от случаев односторонней эксплуатации.

Эволюцию взаимовыгодных ассоциаций теоретически нетрудно себе вообразить, если блага предоставляются и принимаются одновременно, как в случае партнеров, образующих лишайник. Проблемы возникают в тех случаях, когда между предоставлением помощи и расплатой за нее проходит какое-то время. Это происходит потому, что у партнера, первым воспользовавшегося услугой, может возникнуть соблазн смошенничать и отказаться от расплаты, когда придет его очередь. Решение этой проблемы представляет интерес и заслуживает подробного обсуждения. Лучше всего это сделать на гипотетическом примере.

Представим себе некий вид птиц, на котором паразитирует особенно вредный клещ, служащий переносчиком какой-то опасной болезни. Этих клещей следует удалять, причем как можно быстрее. Обычно каждая птица сама обирает с себя клещей, когда чистит перья. Однако одна часть тела ее клюву недоступна – макушка. Всякий человек быстро решит эту проблему. Хотя он, вероятно, и не сможет снять клеща с собственной головы, ему достаточно попросить об этом приятеля. Впоследствии он может отплатить этому приятелю тем же. Взаимные услуги такого рода действительно очень часто встречаются как у птиц, так и у млекопитающих.

Интуитивно все ясно. Всякий, кто способен к осознанному предвидению, может понять, что договориться о взаимном чесании спины вполне разумно. Однако мы уже научились остерегаться сразу принимать то, что интуитивно представляется разумным. Ген неспособен к предвидению. Может ли теория эгоистичного гена объяснить взаимное почесывание спины, или “реципрокный альтруизм”, если между услугой и ответной услугой существует разрыв во времени? Уильямс вкратце рассмотрел эту проблему в своей книге (Williams, 1966), на которую я уже ссылался. Он, как и Дарвин, пришел к выводу, что отложенный ответный альтруизм может возникнуть у видов, способных узнавать и запоминать друг друга как конкретных индивидуумов. Триверс (Trivers, 1971) продолжил эту тему. В то время он не был знаком с концепцией Мейнарда Смита об эволюционно стабильной стратегии. Мне кажется, что если бы он знал о ней, то использовал бы эту концепцию, так как она позволяет естественным образом выразить его идеи. Его ссылка на “парадокс заключенных” – излюбленную головоломку теории игр – показывает, что его мысли уже бродили в том же направлении.

Допустим, что у индивидуума B на макушке сидит паразит. Индивидуум A удаляет его. Спустя какое-то время такой же паразит оказывается на голове у A. Он, естественно, находит B, чтобы B мог отплатить ему за добрый поступок. Но B задирает нос и удаляется. B – обманщик, пользующийся альтруизмом других индивидуумов, но не желающий расплачиваться за это или расплачивающийся в недостаточной степени. Обманщики живут лучше, чем не разбирающиеся в других индивидуумах альтруисты, потому что они добывают себе жизненные блага, не расплачиваясь за это. Разумеется, расходы на удаление опасного паразита с головы другого индивидуума невелики, однако пренебрегать ими не следует. На эту процедуру было затрачено некоторое количество ценной энергии и времени.

Рассмотрим конкретную популяцию, состоящую из индивидуумов, использующих одну из двух стратегий. Как и в анализе Мейнарда Смита, речь идет не об осознанных стратегиях, а о бессознательных программах поведения, закладываемых генами. Дадим этим двум стратегиям названия: Простак и Плут. Простаки снимают паразитов с любого, кому это нужно, без разбора. Плуты принимают альтруистичные услуги со стороны Простаков, но сами никогда не оказывают услуг никому, даже тем, кто раньше оказывал аналогичные услуги им самим. Как и в случае Ястребов и Голубей, мы произвольно устанавливаем цену услуги в очках. Точные цены не имеют значения при условии, что выгода от получения услуги превосходит связанные с ней затраты. Если частота нападения паразита высока, то каждый Простак в популяции, состоящей из Простаков, имеет шансы воспользоваться услугами своих товарищей примерно так же часто, как он сам оказывает им эту услугу. Поэтому средний выигрыш для Простака, находящегося среди Простаков, будет положительным. Все они в сущности благоденствуют, так что название Простаков кажется для них неподходящим. Допустим теперь, что в популяции появился Плут. Будучи единственным Плутом, он может рассчитывать на то, что все остальные члены популяции будут вытаскивать из него паразитов, а ему самому расплачиваться за это не придется. Его средний выигрыш выше среднего для Простака. Поэтому плутовские гены начнут распространяться в популяции, а гены простоты будут быстро элиминированы. Это объясняется тем, что, независимо от соотношения в популяции Плутов и Простаков, первые всегда будут в более выгодном положении. Рассмотрим, например, случай, когда популяция состоит на 50 % из Плутов и на 50 % из Простаков. Средний выигрыш для тех и других будет ниже, чем для каждого индивидуума в популяции, целиком состоящей из Простаков. Но все же Плуты находятся в лучшем положении, так как они извлекают все выгоды, какими бы они ни были, не расплачиваясь за это. Когда доля Плутов достигнет 90 %, средний выигрыш для всех индивидуумов станет очень низким: многие индивидуумы и одного, и другого типа будут погибать от инфекций, переносимых клещами. Но опять-таки Плуты окажутся в лучшем положении, чем Простаки. Даже если популяция в целом дойдет до полного вымирания, никогда не настанет такой период, когда выигрыш Простаков превысит выигрыш Плутов. Поэтому до тех пор, пока мы рассматриваем только эти две стратегии, ничто не может остановить вымирание Простаков, а весьма вероятно, и вымирание всей популяции.

Допустим теперь, что существует третья стратегия – Злопамятный. Злопамятные удаляют паразитов с незнакомцев и с тех индивидуумов, которые раньше оказывали эту услугу им самим. Если, однако, какой-то индивидуум обманет их, они запоминают этот инцидент и затаивают против него злобу, отказываясь в дальнейшем вытаскивать из него паразитов. В популяции, состоящей из Злопамятных и Простаков, невозможно отличить одних от других. Индивидуумы обоих типов проявляют альтруизм ко всем остальным и извлекают из него одинаковый и притом высокий средний выигрыш. В популяции, состоящей исключительно из Плутов, один Злопамятный не добился бы большого успеха. Он затратил бы много энергии, удаляя паразитов с большинства встречающихся ему индивидуумов, поскольку ему потребуется известное время, чтобы выработать злопамятность по отношению к ним ко всем. При этом никто не будет оказывать ему ответную услугу. Если доля Злопамятных мала по сравнению с долей Плутов, то ген злопамятности будет элиминирован. Если же Злопамятным удастся повысить свою численность до некоторой критической доли, то их шансы встретиться друг с другом станут достаточно высокими, чтобы компенсировать напрасные усилия, затраченные на обирание паразитов с Плутов. По достижении этой критической доли Злопамятные начнут получать в среднем больший выигрыш, чем Плуты, которые со все возрастающей скоростью будут двигаться к вымиранию. Когда Плуты приблизятся к вымиранию почти вплотную, этот процесс замедлится, и они могут довольно долго сохраняться в популяции как меньшинство. Это объясняется тем, что для каждого отдельного редко встречающегося Плута вероятность дважды столкнуться с одним и тем же Злопамятным очень мала. Поэтому доля в популяции индивидуумов, затаивших злобу на каждого данного Плута, будет невелика.

Я рассказывал об этих стратегиях так, как если бы интуитивно было очевидным, что именно таким образом все и произойдет. На самом же деле это не столь очевидно, и я в качестве предосторожности проверил справедливость своих интуитивных ощущений, смоделировав весь процесс на компьютере. Стратегия Злопамятного действительно оказалась эволюционно стабильной относительно стратегий Простака и Плута в том смысле, что популяцию, значительную долю которой составляют Злопамятные, не смогут захватить ни Плуты, ни Простаки. Однако стратегия Плута также эволюционно стабильна, так как популяцию, значительную долю которой составляют Плуты, не могут захватить ни Злопамятные, ни Простаки. Популяция может существовать при любой из этих двух ЭСС. В конечном счете она может одним рывком перейти от одной стратегии к другой. В зависимости от точных значений выигрышей (принятые при моделировании допущения были, конечно, произвольными) одна или другая из этих двух ЭСС будет иметь более широкую “зону притяжения” и будет достигнута с большей вероятностью. Обратите, между прочим, внимание на то, что хотя шансы на вымирание у популяции Плутов выше, чем у популяции Злопамятных, это отнюдь не влияет на ее статус как одной из ЭСС. Если данная популяция достигает такой ЭСС, которая ведет к вымиранию, то она вымирает. Что же, тем хуже для нее4.

Очень занятно наблюдать за компьютерной моделью при следующих начальных условиях: сильное преобладание Простаков, небольшое, чуть выше критического, число Злопамятных и примерно такое же небольшое число Плутов. Прежде всего наступает крах популяции Простаков в результате отчаянной эксплуатации со стороны Плутов. Численность последних резко возрастает, достигая пика как раз в момент гибели последнего Простака. Но Плутам предстоит еще иметь дело со Злопамятными. Во время стремительной гибели Простаков численность Злопамятных медленно снижается под градом ударов со стороны процветающих Плутов, но им все же удается удерживаться на исходном уровне. После того, как погиб последний Простак и Плуты уже не могут безнаказанно продолжать свою эгоистичную эксплуатацию, численность Злопамятных начинает медленно повышаться за счет снижения численности Плутов. Повышение их численности неуклонно набирает скорость. Ускорение идет круто вверх, популяция Плутов сокращается, приближаясь к вымиранию, а затем это сокращение несколько замедляется, поскольку Плуты начинают пользоваться преимуществами своей низкой частоты и связанной с этим относительной свободой от Злопамятных. Однако медленно и неумолимо Плуты гибнут и Злопамятные остаются единственной силой. Парадоксальным образом в начальный период присутствие Простаков фактически было опасным для Злопамятных, потому что они обеспечивали временное процветание Плутов.

Между прочим, мой гипотетический пример о том, что отсутствие груминга опасно для животных, вполне правдоподобен. У мышей, содержащихся в изоляции, развиваются неприятные язвы на тех частях головы, до которых они не могут добраться. При групповом содержании мышей таких поражений не возникает, так как животные вылизывают друг друга. Было бы интересно проверить теорию реципрокного альтруизма экспериментально. Вероятно, мыши могут послужить подходящим объектом для такого исследования.

Триверс рассматривает замечательный симбиоз рыб-чистильщиков с другими видами. Известно примерно пятьдесят видов мелких рыб и креветок, питающихся паразитами, которых они снимают с поверхности тела более крупных рыб и других животных. Крупной рыбе выгодно, что ее очищают от паразитов, а чистильщики обеспечивают себя таким образом обильной пищей, то есть между ними существует симбиоз. Во многих случаях крупная рыба открывает рот и разрешает чистильщикам заплывать в ротовую полость, чтобы почистить ей зубы, после чего они выплывают наружу через жаберные щели, очищая также и их. Можно было бы предположить, что крупная рыба дождется, пока ее всю не очистят от паразитов, а затем проглотит чистильщика. Однако она обычно отпускает его целым и невредимым. Это можно считать явным проявлением альтруизма, поскольку во многих случаях чистильщик имеет такие же размеры, как обычные жертвы своего клиента.

Чистильщикам свойственны особая полосатая окраска и своеобразные танцевальные движения, служащие опознавательными признаками. Крупные рыбы обычно не поедают мелких, которые обладают такими характерными полосками и приближаются к ней, выполняя соответствующий танец. Напротив, они впадают в состояние, напоминающее транс, предоставляя чистильщикам свободный доступ не только к своей наружной поверхности, но и пропуская их в ротовую полость. Зная сущность эгоистичных генов, не приходится удивляться, что Плуты, безжалостные эксплуататоры, воспользовались этим. Существуют виды мелких рыб, внешне неотличимые от чистильщиков и демонстрирующие такие же танцы, чтобы иметь возможность без опаски приблизиться к большой рыбе. Когда крупная рыба впадает в транс ожидания, Плут, вместо того чтобы вытаскивать паразитов, откусывает кусочек от ее плавника и пускается наутек. Однако, несмотря на Плутов, взаимоотношения между чистильщиками и их клиентами бывают главным образом дружескими и стабильными. Деятельность чистильщиков играет важную роль в повседневной жизни сообщества кораллового рифа. Каждый из них имеет собственную территорию, и иногда можно наблюдать крупных рыб, которые “стоят к ним в очереди”, как люди к парикмахеру. Вероятно, эта приверженность к определенному месту сделала возможной в данном случае эволюцию отлаженного реципрокного альтруизма. Польза, извлекаемая крупной рыбой из возможности многократно возвращаться в одну и ту же “парикмахерскую”, вместо того чтобы всякий раз искать новую, должна перевешивать потери, возникающие из-за того, что она не съедает чистильщиков. Поскольку чистильщики невелики по размерам, в это легко поверить. Присутствие Плутов, подражающих чистильщикам, быть может, косвенно подвергает опасности честных чистильщиков, оказывая незначительное давление на крупных рыб, чтобы они поедали полосатых танцоров. Приверженность настоящих чистильщиков к определенному месту позволяет их клиентам находить их и избегать Плутов.

Долгая память и способность распознавать отдельных индивидуумов хорошо развиты у человека. Следует ожидать поэтому, что реципрокный альтруизм играл важную роль в его эволюции. Триверс заходит еще дальше, высказывая предположение, что многие психологические свойства человека, такие как зависть, чувство вины, благодарности, симпатии и так далее, были созданы естественным отбором для того, чтобы повысить его способности мошенничать, обнаруживать обманщиков, а самому избегать подозрений в мошенничестве. Особенно интересны “искусные мошенники”, которые, по-видимому, в свою очередь оказываются жертвой обмана, но неизменно получают чуть больше, чем отдают сами. Возможно даже, что большой головной мозг человека и его предрасположенность к математическому мышлению развивались как механизм для все более хитроумного мошенничества и для все более проницательного обнаружения обмана со стороны других. Деньги – это формальный знак отложенного реципрокного альтруизма.

Увлекательным спекуляциям, которые порождает идея реципрокного альтруизма в приложении к виду Homo sapiens, нет конца. Сколь они ни соблазнительны, я разбираюсь в них не больше, чем первый встречный, а поэтому предоставляю читателю развлекаться самому.

 

 

Глава 11. Мемы – новые репликаторы

Все, что говорилось до сих пор, мало относилось непосредственно к человеку, хотя делалось это непреднамеренно. Термин “машина выживания” был выбран отчасти потому, что слово “животное” исключало бы из сферы внимания растения, а для некоторых читателей – и человека. Мои рассуждения должны, на первый взгляд, относиться к любому существу, возникшему в процессе эволюции. Если какой-то вид следует исключить из рассмотрения, то для этого должны быть особые и веские причины. Имеются ли веские причины для того, чтобы признать исключительность вида Homo sapiens? Полагаю, что на это следует ответить утвердительно.

Большую часть всего, что есть необычного в человеке, можно вместить в одно слово: культура. Я использую это слово в его научном, а не снобистском смысле. Передача культурного наследия аналогична генетической передаче: будучи в своей основе консервативной, она может породить некую форму эволюции. Джеффри Чосер не смог бы беседовать с современным англичанином, несмотря на то, что они связаны друг с другом непрерывной цепью из двух десятков поколений англичан, каждый из которых вполне мог бы вести разговор со своими непосредственными соседями по этой цепи, как сын говорит со своим отцом. Язык, по-видимому, “эволюционирует” негенетическими способами и со скоростью на несколько порядков выше, чем эволюция генетическая.

Передача культурного наследия свойственна не только человеку. Лучший известный мне пример недавно описал П. Дженкинс. Он касается песни седлистой гуйи – птицы, обитающей на островах близ побережья Новой Зеландии. На острове, где работал Дженкинс, у гуйи был целый репертуар из примерно девяти четко различающихся песен. Каждый самец исполнял лишь одну или несколько из этих песен, так что птиц можно было разбить на диалектные группы. Например, одна группа, в которую входили восемь самцов, занимавших соседние территории, исполняла одну определенную песню, названную песня CC. Другие диалектные группы исполняли другие песни. Иногда у членов одной группы была не одна, а несколько общих песен. Сравнивая песни отцов и сыновей, Дженкинс установил, что они не наследуются генетически. Каждый молодой самец, по-видимому, перенимал песни у своих соседей по территории, подражая им, подобно тому, как учится родному языку ребенок. В течение большей части времени, проведенного Дженкинсом на острове, там существовало определенное число песен, своего рода песенный фонд, из которого каждый молодой самец черпал собственный небольшой репертуар. Но иногда Дженкинсу выпадала удача быть свидетелем сочинения новой песни, возникавшей в результате ошибки, допущенной при имитации одной из старых песен: “Новые формы песен возникают по-разному – в результате изменения высоты тона, повторения какого-нибудь тона, прерывания того или иного тона или комбинирования отдельных частей существующих песен… Новая форма появлялась внезапно и мало менялась на протяжении нескольких лет. В дальнейшем в ряде случаев этот новый вариант передавался без искажений более молодым птицам, так что возникала группа песен с явно выраженным сходством”. Дженкинс называет возникновение новых песен “культурными мутациями”.

Эволюция песни у седлистой гуйи действительно происходит негенетическими способами. Есть и другие примеры культурной эволюции у птиц и обезьян, но это просто интересные курьезы. Чтобы действительно увидеть, на что способна культурная эволюция, нам следует обратиться к человеку. Язык – лишь один из многих примеров. Мода на одежду и еду, обряды и обычаи, искусство и архитектура, технические знания и умения – все это развивается в историческое время, причем развитие это напоминает сильно ускоренную генетическую эволюцию, не имея на самом деле никакого к ней отношения. Однако, как и в генетической эволюции, изменение может быть прогрессивным. В некотором смысле современная наука действительно лучше науки античной. По мере того как проходят одно столетие за другим, наше понимание Вселенной не только изменяется – оно совершенствуется. По общему признанию, современный расцвет начался только в эпоху Возрождения, которой предшествовал мрачный период застоя, когда европейская научная культура замерла на уровне, достигнутом древними греками. Но, как мы убедились в главе 5, генетическая эволюция тоже может совершаться путем ряда коротких бросков, разделенных периодами стабильности.

Об аналогии между культурной и генетической эволюцией говорят часто, причем иногда с совершенно ненужным мистическим привкусом. Аналогию между научным прогрессом и генетической эволюцией с помощью естественного отбора особенно подробно рассмотрел сэр Карл Поппер. Я хочу пойти даже дальше, затронув направления, исследуемые также, например, генетиком Луиджи Лукой Кавалли-Сфорца, антропологом Тедом Клоком и этологом Дж. Калленом.

Как страстный дарвинист я не был удовлетворен объяснениями поведения человека, предложенными моими столь же страстными коллегами. Они пытаются найти “биологические преимущества” в различных атрибутах человеческой культуры. Например, религии примитивных племен рассматриваются как механизм, помогающий укреплению группового самосознания. Это очень важно для вида, который охотится стаей, при этом каждый участник стаи рассчитывает, что благодаря кооперации удастся схватить крупную и быстроногую жертву. Часто заранее принятая эволюционная концепция, в рамках которой формулируются такие теории, подразумевает групповой отбор, однако эти теории можно перефразировать в терминах ортодоксального отбора генов. Человек провел большую часть нескольких последних миллионов лет, живя маленькими группами, связанными родством. Возможно, кин-отбор и отбор, благоприятствующий реципрокному альтруизму, действовали на гены человека, создавая многие из наших основных психологических черт и склонностей. Сами по себе эти идеи приемлемы, однако мне кажется, что они пасуют перед такой грандиозной задачей, как объяснение происхождения культуры, культурной эволюции и огромных различий человеческой культуры в разных частях земного шара – от предельного эгоизма представителей угандийского племени ик, описанного Колином Терн-буллом, до кроткого альтруизма арапешей, воспетого Маргарет Мид. Думаю, нам еще раз следует начать сызнова и вернуться к первоосновам. Я собираюсь высказать мнение, сколь бы оно ни показалось неожиданным из уст автора первых глав, что для того, чтобы понять эволюцию современного человека, мы должны отказаться от гена как единственной основы наших представлений об эволюции. Я убежденный дарвинист, но мне кажется, что дарвинизм слишком великая теория и не может ограничиваться узкими рамками гена. В моих рассуждениях ген используется лишь в качестве аналогии, не более того.

В чем, в конечном счете, главная особенность генов? В том, что они являются репликаторами. Считается, что законы физики справедливы во всех доступных наблюдению точках Вселенной. Существуют ли какие-нибудь биологические законы, которые могли бы носить такой же универсальный характер? Когда астронавты отправятся к отдаленным планетам в поисках жизни, они могут встретиться с существами настолько странными, что нам трудно их даже представить себе. Но есть ли что-нибудь, свойственное всему живому, где бы оно ни находилось и на чем бы ни основывалась его химия? Если бы оказалось, что существуют такие формы жизни, химия которых основана на кремнии, а не на углероде, или использует аммиак, а не воду, если бы обнаружились формы, которые при температуре –100°C вскипают и гибнут, или формы, базирующиеся вовсе не на химии, а на каких-то очень хитрых электронных схемах, то мог бы тем не менее существовать некий общий закон, которому подчинялось бы все живое? Разумеется, я этого не знаю, но если бы мне пришлось держать пари, я бы сделал ставку на один фундаментальный закон – закон о том, что все живое эволюционирует в результате дифференциального выживания реплицирующихся единиц[54]. Случилось так, что реплицирующейся единицей, преобладающей на нашей планете, оказался ген – молекула ДНК. Возможно существование и других таких единиц. Если они существуют, при наличии некоторых иных условий они неизбежно составляют основу некоего эволюционного процесса.

Но надо ли нам отправляться в далекие миры в поисках репликаторов иного типа и, следовательно, иных типов эволюции? Мне думается, что репликатор нового типа недавно возник именно на нашей планете. Пока он находится в детском возрасте, еще неуклюже барахтается в своем первичном бульоне, но эволюционирует с такой скоростью, что оставляет старый добрый ген далеко позади.

Новый бульон – это бульон человеческой культуры. Нам необходимо имя для нового репликатора, существительное, которое отражало бы идею о единице передачи культурного наследия или о единице имитации. От подходящего греческого корня получается слово “мимема”, но мне хочется, чтобы слово было односложным, как и “ген”. Я надеюсь, что мои получившие классическое образование друзья простят мне, если я сокращу слово “мимема” до “мем”[55]. Можно также связать его с “мемориалом”, “меморандумом” или с французским словом même [тот же; такой же; одинаковый].

Примерами мемов служат мелодии, идеи, модные словечки и выражения, способы варки похлебки или сооружения арок. Точно так же, как гены распространяются в генофонде, переходя из одного тела в другое с помощью сперматозоидов или яйцеклеток, мемы распространяются в том же смысле, переходя из одного мозга в другой с помощью процесса, который в широком смысле можно назвать имитацией. Если ученый услышал или прочитал об интересной идее, он сообщает о ней своим коллегам и студентам. Он упоминает о ней в своих статьях и лекциях. Если идею подхватывают, она распространяется, передаваясь от одного мозга другому. Как изящно сформулировал мой коллега Николас К. Хамфри смысл раннего наброска этой главы, “мемы следует рассматривать как живые структуры не только в метафорическом, но и в техническом смысле[56]. Посадив в мой разум плодовитый мем, вы буквально поселили в нем паразита, превратив тем самым разум в носителя, где происходит размножение этого мема, точно так же, как размножается какой-нибудь вирус, ведущий паразитическое существование в генетическом аппарате клетки-хозяина. И это не просто образное выражение: мем, скажем, ‘веры в загробную жизнь’ реализуется физически миллионы раз, как некая структура в нервной системе отдельных людей по всему земному шару”.

Рассмотрим представление о Боге. Мы не знаем, как оно возникло в мемофонде. Возможно, оно возникало многократно путем независимых “мутаций”. Во всяком случае это очень старая идея. Как она реплицируется? С помощью устного и письменного слова, подкрепляемого великой музыкой и великим изобразительным искусством. Почему эта идея обладает такой высокой выживаемостью? Напомним, что в данном случае “выживаемость” означает не выживание гена в генофонде, а выживание мема в мемофонде. На самом деле вопрос состоит в следующем: в чем та “особость” идеи о Боге, которая придает ей такую стабильность и способность проникать в культурную среду? Выживаемость хорошего мема, входящего в мемофонд, обусловливается его большой психологической привлекательностью. Идея Бога дает на первый взгляд приемлемый ответ на глубокие и волнующие вопросы о смысле существования. Она позволяет надеяться, что несправедливость на этом свете может быть вознаграждена на том. “Всегда протянутые руки”, готовые поддержать нас в минуту слабости, которые, подобно плацебо, отнюдь не теряют своей действенности, хотя и существуют лишь в нашем воображении. Вот некоторые из причин, по которым идея Бога с такой готовностью копируется последовательными поколениями индивидуальных мозгов. Бог существует, пусть лишь в форме мема с высокой выживаемостью или инфекционностью, в среде, создаваемой человеческой культурой.

Некоторые из моих коллег заметили мне, что эти рассуждения о выживаемости мема о Боге принимаются без доказательств. В конечном счете они всегда хотят вернуться к “биологическому преимуществу”. Им недостаточно слов, что идея о Боге обладает “большой психологической привлекательностью”. Они хотят знать, почему она ею обладает. Психологическая привлекательность означает привлекательность для мозга, а мозг формируется в результате естественного отбора генов в генофондах. Они хотят установить, как наличие такого мозга повышает выживаемость генов.

Мне очень симпатичен такой подход, и у меня нет сомнений, что наличие у человека мозга дает ему определенные генетические преимущества. Тем не менее я полагаю, что эти коллеги, если они внимательно изучат те основы, на которых строятся их собственные допущения, обнаружат, что они принимают на веру не меньше, чем я. Главнейшая причина, почему желательно объяснять биологические явления с точки зрения генетических преимуществ, состоит в том, что гены представляют собой репликаторы. Как только в первичном бульоне сложились условия, в которых молекулы могли самокопироваться, репликаторы приняли эту функцию на себя. В течение более чем трех тысяч миллионов лет ДНК была единственным на свете репликатором, заслуживающим внимания. Однако она не обязательно должна сохранять свои монопольные права вечно. Всякий раз, когда возникают условия, в которых какой-либо новый репликатор может создавать собственные копии, эти новые репликаторы будут стремиться взять верх и начать собственную эволюцию нового типа. Однажды начавшись, эта новая эволюция отнюдь не должна занимать подчиненное положение по отношению к прежней. Старая эволюция, происходящая путем отбора генов, создав мозг, предоставила “бульон”, в котором возникли первые мемы. После появления самокопирующихся мемов началась их собственная, гораздо более быстрая эволюция. Мы, биологи, так глубоко прониклись идеей генетической эволюции, что нередко забываем о том, что это лишь одна из многих возможных эволюций.

Имитация в широком смысле – это тот способ, которым гены могут реплицироваться. Это аналог естественного отбора. Я приводил некоторые примеры качеств, обусловливающих высокую выживаемость мемов. Но в общем они должны быть такими же, как качества, обсуждавшиеся для репликаторов в главе 2: долговечность, плодовитость и точность копирования. Долговечность каждой копии мема, так же как и каждой копии гена, вероятно, относительно несущественна. Копия песни “Старые времена” (Auld lang syne), хранящаяся в моем мозгу, сохранится только до тех пор, пока я жив[57]. Копия той же песни, напечатанная в моем экземпляре “Песенника шотландского студента” (The Scottish student’s song book), вряд ли просуществует много дольше. Но я надеюсь, что копии той же песни сохранятся на века в мозгу людей и на бумаге. Для мемов, как и для генов, плодовитость гораздо важнее долговечности. Если данный мем представляет собой научную идею, то его распространение будет зависеть от того, сколь приемлема эта идея для популяции ученых. Приблизительную оценку ее выживаемости может дать подсчет ссылок на нее в научных журналах за ряд лет[58]. Если мем – это популярная песенка, то об ее распространенности в мемофонде можно судить по числу людей, насвистывающих ее на улицах. Если это фасон дамской обуви, то его популярность можно определить по данным обувных магазинов о продаже этой модели. Некоторые мемы, подобно некоторым генам, достигают блестящего кратковременного успеха, но не сохраняются в мемофонде надолго. Примерами служат шлягеры или туфли на шпильках. Другие, как законы иудейской религии, распространяются на протяжении тысячелетий, обычно вследствие долговечности письменных свидетельств.

Это подводит нас к третьему важному условию успеха репликаторов: точности копирования. Должен признаться, что здесь я стою на зыбкой почве. На первый взгляд вовсе не кажется, что мемы реплицируются с высокой точностью. Всякий раз, когда ученый слышит о какой-либо идее и сообщает о ней кому-то другому, он, вероятно, немножко ее изменяет. Я не скрывал, сколь многим эта книга обязана идеям Роберта Л. Триверса. Однако при этом я не излагал их его словами. Я перекручивал их в соответствии со своими собственными целями, изменяя акценты, смешивая идеи Триверса со своими и с идеями других ученых. Его мемы передаются вам в измененной форме. Это совсем непохоже на корпускулярную передачу генов по принципу “все или ничего”. Создается впечатление, что передача мемов сопряжена с непрерывным мутированием, а также со слиянием.

Возможно, что это впечатление некорпускулярности иллюзорно и не разрушает аналогии с генами. Ведь в конечном счете, если взглянуть на наследование таких генетических признаков, как рост или цвет кожи человека, они не кажутся результатом деятельности неделимых или несмешивающихся генов. Дети от брака представителей европеоидной и негроидной рас не бывают черными или белыми – они промежуточные. Это не значит, что гены, определяющие цвет кожи, некорпускулярны. Это лишь означает, что в определении цвета кожи участвует так много генов и эффект каждого из них так мал, что создается впечатление, будто они сливаются. До сих пор я говорил о мемах так, как если бы было очевидно, из чего состоит один единичный мем. Однако, разумеется, это далеко не очевидно. Я говорил, что одна песенка соответствует одному мему. Но что же такое симфония? Сколько она вмещает мемов? Соответствует ли мему каждая ее часть, каждая различимая фраза мелодии, каждый такт, каждый аккорд или что-то еще?

Я прибегаю к тому же словесному приему, который был использован в главе 3. Там я разделил “генный комплекс” на крупные и мелкие генетические единицы и на единицы внутри этих единиц. Ген был определен не как некая жесткая единица, а как единица, созданная для удобства: участок хромосомы, самокопирующийся с достаточной точностью, чтобы служить жизнеспособной единицей естественного отбора. Если какая-то фраза из Девятой симфонии Бетховена настолько легко узнается и запоминается, что ее можно вырвать из всего произведения и использовать в качестве позывного сигнала одной, доводящей до исступления своей назойливостью, европейской радиостанции, то она заслуживает названия мема. Между прочим, эти позывные существенно повлияли на мою способность наслаждаться этой симфонией.

Подобным же образом, когда мы говорим, что в наши дни все биологи верят в теорию Чарльза Дарвина, мы не имеем в виду, что в мозгу каждого биолога запечатлена идентичная копия точных слов самого Дарвина. Каждый индивидуум по-своему интерпретирует идеи Дарвина. Он, быть может, узнал о них не из трудов самого Дарвина, а из работ более поздних авторов. Многое из того, что говорил Дарвин, в деталях неверно. Если бы Дарвин прочитал эту книгу, он едва ли узнал бы в ней собственную теорию в ее первоначальном виде, хотя я надеюсь, что ему понравилось бы то, как я ее изложил. Тем не менее существует что-то, некая сущность дарвинизма, которая содержится в мозгу каждого, кто понимает эту теорию. Без этого почти любое утверждение о том, что два человека согласны друг с другом в чем-то, было бы лишено смысла. “Мем-идею” можно определить как некую единицу, способную передаваться от одного мозга другому. Поэтому мем дарвиновской теории – это та неотъемлемая основа идеи, которая содержится во всех мозгах, понимающих эту теорию. В таком случае различия в представлениях разных людей об этой теории не составляют, по определению, часть мема. Если теорию Дарвина можно разбить на составные части таким образом, что некоторые люди принимают часть А, не принимая часть Б, а другие принимают часть Б, не принимая часть А, то части А и Б следует рассматривать как отдельные мемы. Если почти все, кто верит в часть А, верит и в часть Б, то есть если оба эти мема, пользуясь генетическим термином, тесно “сцеплены”, их удобно объединить в один мем.

Продолжим аналогию между мемами и генами. На протяжении всей книги я подчеркивал, что мы не должны представлять себе гены как сознательные, целеустремленные элементы. Однако слепой естественный отбор заставляет их вести себя так, как если бы они стремились к какой-то цели. Поэтому, удобства ради, говоря о генах, мы пользовались соответствующими выражениями. Например, когда мы говорим, что “гены стараются повысить свою численность в будущих генофондах”, на самом деле имеется в виду, что “те гены, которые ведут себя таким образом, чтобы их численность в будущих генофондах повышалась, – это гены, эффекты которых мы наблюдаем в мире”. Раз оказалось удобным представлять себе гены как активные единицы, которые целенаправленно трудятся, чтобы обеспечить собственное выживание, быть может, было бы удобно так же относиться и к мемам. Ни в том, ни в другом случае мы не впадаем в мистику. В обоих случаях идея цели – всего лишь метафора, но мы уже убедились, как плодотворна эта метафора применительно к генам. Мы даже наделяем гены такими эпитетами, как “эгоистичный” или “безжалостный”, прекрасно зная, что это лишь фигура речи. Можем ли мы точно так же попытаться поискать эгоистичные или безжалостные мемы?

Здесь возникает одна проблема, связанная с конкуренцией. Везде, где существует половое размножение, каждый ген конкурирует прежде всего с собственными аллелями – соперниками, претендующими на то же место в хромосоме. У мемов, по-видимому, нет ничего, эквивалентного хромосомам, и ничего, эквивалентного аллелям. Я полагаю, что в некотором тривиальном смысле многие идеи имеют свои “противоположности”. Но, в общем, мемы скорее напоминают первые реплицирующиеся молекулы, беспорядочно и свободно парившие в первичном бульоне, чем современные гены, аккуратно расположенные в своих парных хромосомных формированиях. Так в каком же смысле мемы конкурируют друг с другом? Следует ли ожидать от них проявлений “эгоизма” или “жестокости”, раз у них нет аллелей? Оказывается, таких проявлений ожидать можно, поскольку существует один аспект, в котором они должны вступать в конкуренцию.

Любой пользователь компьютера знает, как ценятся машинное время и объем памяти. Компьютеры, в которых живут мемы, – это человеческие головы[59]. Возможно, что время представляет собой более важный лимитирующий фактор, чем объем памяти, и что оно служит объектом сильной конкуренции. Мозг человека и тело, которым он управляет, могут выполнять одновременно не более одной или нескольких функций. Если какой-либо мем целиком поглощает все внимание мозга данного человека, то это должно происходить за счет мемов-“соперников”. Другие предметы потребления, за которые конкурируют мемы, – это время на радио и на телевидении, площадь на рекламных щитах, на газетных полосах и библиотечных полках.

Что касается генов, то, как мы видели в главе 3, в генофонде могут возникать коадаптированные генные комплексы. Большая группа генов, определяющих мимикрию у бабочек, оказалась сцепленной в одной хромосоме, причем настолько тесно, что ее можно рассматривать как один ген. В главе 5 мы встретились с более изощренной идеей эволюционно стабильного набора генов. В процессе эволюции в генофонде хищных животных возникли комбинации, детерминирующие соответствующие друг другу зубы, когти, пищеварительный тракт и органы чувств, а в генофондах растительноядных животных сложился иной стабильный набор признаков. Происходит ли что-либо аналогичное в мемофондах? Соединяется ли, скажем, данный хороший мем с какими-то другими мемами и способствует ли такая ассоциация выживанию участвующих в ней мемов? Вероятно, мы могли бы рассматривать церковь с ее архитектурой, обрядами, законами, музыкой, изобразительным искусством и письменными свидетельствами как коадаптированный стабильный набор мемов, взаимно поддерживающих друг друга.

Возьмем частный пример: один из аспектов доктрины, весьма эффективный в укреплении религиозных устоев, – угроза адского пламени. Многие дети и даже некоторые взрослые верят в то, что они подвергнутся после смерти ужасным мучениям, если не будут выполнять требования церкви. Это особенно мерзкий способ убеждения, причинявший людям сильные психологические страдания в средние века и сохранивший свое воздействие даже в наши дни. Но он чрезвычайно эффективен. Невольно возникает мысль, что этот способ был придуман священнослужителями-макиавеллистами, которых специально обучали психологическим методам воздействия. Я сомневаюсь, однако, что священнослужители были так изобретательны. Гораздо более вероятно, что бессознательные мемы обеспечили собственное выживание благодаря тем самым качествам псевдобезжалостности, которыми обладают гены, достигшие успеха. Идея адского пламени просто-напросто поддерживает себя вследствие своего чрезвычайно глубокого психологического воздействия. Она оказалась сцепленной с мемом о Боге, потому что обе они подкрепляют одна другую и способствуют выживанию друг друга в мемофонде.

Другой член религиозного комплекса мемов называется верой. При этом имеется в виду слепая вера в отсутствие доказательств и даже наперекор доказательствам. Рассказ о Фоме излагается обычно не так, чтобы заставить нас восхищаться Фомой, но чтобы мы могли восхищаться поведением других апостолов по сравнению с ним. Фома требовал доказательств. Ничто не может быть более опасным для некоторых мемов, чем поиски доказательств. Других апостолов, вера которых была так крепка, что им не требовалось доказательств, выставляют нам как пример, достойный подражания. Мем слепой веры поддерживает самого себя с помощью такой простой осознанной уловки, как отказ от рационального исследования.

Слепая вера может оправдать все, что угодно[60]. Если человек поклоняется другому божеству, или даже если он в своем поклонении тому же божеству придерживается другого ритуала, слепая вера может приговорить его к смерти – на кресте, на колу, от меча крестоносца, от выстрела на одной из улиц Бейрута или от взрыва в одном из баров Белфаста. Мемы слепой веры имеют собственные, не знающие жалости способы распространения. Это относится не только к религии, но также к патриотизму и политике.

Мемы и гены нередко подкрепляют друг друга, но иногда они оказываются в оппозиции. Например, холостяцкий образ жизни предположительно не наследуется генетически. Ген, который бы детерминировал безбрачие, обречен на провал и может сохраниться в генофонде лишь при весьма специфических условиях, существующих, например, у общественных насекомых. Но все же мем безбрачия может добиться успеха в мемофонде. Допустим, например, что успех данного мема решающим образом зависит от того, сколько времени люди тратят на активную передачу его другим людям. Все время, которое уходит не на попытки передать мем кому-то, а на что-то другое, с точки зрения мема можно считать потерянным временем. Мем безбрачия передается священниками мальчикам, которые еще не решили, чему они посвятят свою жизнь. Средством передачи служат разного рода воздействия, устное и письменное слово, личный пример и тому подобное. Допустим, что женитьба ослабила степень влияния священника на его паству, поскольку, скажем, семья стала занимать значительную часть его времени и внимания. Это и на самом деле было выдвинуто в качестве официальной причины усиления безбрачия среди священников. Если бы это было так, отсюда вытекало бы, что выживаемость мема безбрачия могла быть выше, чем выживаемость мема вступления в брак. Разумеется, в том, что касается гена, детерминирующего безбрачие, было верно обратное. Если священник служит машиной выживания для мемов, то безбрачие – полезный атрибут, который следовало бы в него встроить. Безбрачие – лишь один из второстепенных компонентов большого комплекса взаимно поддерживающих друг друга религиозных мемов.

Я предполагаю, что коадаптированные мемокомплексы эволюционируют таким же образом, как коадаптированные генные комплексы. Отбор благоприятствует мемам, которые эксплуатируют среду себе на благо. Эта культурная среда состоит из других мемов, которые также подвергаются отбору. Поэтому мемофонд в конечном счете приобретает атрибуты эволюционно стабильного набора, проникнуть в который новым мемам оказывается трудно.

Мои высказывания о мемах носят несколько негативный характер, но у них есть и жизнерадостный аспект. После смерти от нас остаются две вещи: наши гены и наши мемы. Мы были построены как генные машины, созданные для того, чтобы передавать свои гены потомкам. Но в этом аспекте мы будем забыты через три поколения. Ваш ребенок, даже ваш внук, может быть похож на вас чертами лица, музыкальной одаренностью, цветом волос. Но с каждым поколением вклад ваших генов уменьшается вдвое. Очень скоро этот вклад становится пренебрежимо мал. Наши гены могут оставаться бессмертными, однако сочетание генов, имеющееся в каждом из нас, неизбежно погибнет. Елизавета II – прямой потомок Вильгельма Завоевателя. Тем не менее вполне возможно, что у нее нет ни одного из генов старого короля. Не стоит искать бессмертия с помощью размножения.

Если, однако, вы вносите какой-то вклад в мировую культуру, если у вас возникла хорошая идея, если вы сочинили песню, изобрели свечу зажигания, написали стихотворение, они могут продолжать жить в первозданном виде в течение еще долгого времени после того, как ваши гены растворятся в общем фонде. Как заметил Джордж К. Уильямс, никого не беспокоит вопрос о том, сохранились ли на свете хотя бы один или два из генов Сократа. Мемокомплексы же Сократа, Леонардо да Винчи, Коперника или Маркони все еще сохраняют полную силу.

Каким бы спекулятивным ни было представленное здесь развитие теории мемов, есть один серьезный момент, который мне хотелось бы еще раз подчеркнуть: когда мы рассматриваем эволюцию культурных признаков и их выживаемость, мы должны ясно указывать, о чьей выживаемости идет речь. Биологи, как мы видели, привыкли искать преимущества на уровне гена (или, в зависимости от вкусов, на уровне индивидуума, группы или вида). Однако никто из нас прежде не подумал о том, что эволюция данного культурного признака происходила так, а не иначе, просто потому, что это выгодно для самого этого признака.

Нам нет нужды заниматься поисками обычных биологических ценностей, определяющих выживание таких вещей, как религия, музыка и ритуальные танцы, хотя они, возможно, и существуют. После того как гены снабдили свои машины выживания мозгами, способными к быстрой имитации, мемы автоматически берут это на себя. Нам даже нет необходимости постулировать какое-то генетическое преимущество, присущее имитации, хотя это было бы полезно. Необходимо лишь одно: чтобы мозг был способен к имитации. При этом условии возникнут мемы, которые смогут полностью использовать эту способность.

На этом я закрываю тему новых репликаторов и заканчиваю главу на ноте обоснованной надежды. У человека есть черта, присущая ему одному, развитие которой могло происходить через мемы или без связи с ними: его способность к осознанному предвидению. Эгоистичные гены (а также мемы, если вы принимаете допущения в этой главе) не способны к предвидению. Это бессознательные слепые репликаторы. Тот факт, что они реплицируются, при некоторых других условиях означает, что они волей-неволей будут способствовать эволюции качеств, которые в особом смысле, принятом в этой книге, можно назвать эгоистичными. Нельзя ожидать, что простой репликатор, будь то ген или мем, воздержится от использования кратковременного эгоистичного преимущества, даже если в далекой перспективе ему придется расплачиваться за это. Мы убедились в этом в главе об агрессии. Несмотря на то, что “заговор Голубей” для каждого Голубя был бы предпочтительней, чем эволюционно стабильная стратегия, естественный отбор неминуемо предпочтет ЭСС.

Быть может, есть еще одна черта, свойственная только человеку: это способность к неподдельному бескорыстному альтруизму. Я надеюсь, что это так, но не стану приводить доводы за или против или же строить гипотезы о том, как происходила эволюция этой черты на уровне мемов. Я хочу лишь сказать, что даже если относиться к этому пессимистически и допустить, что отдельный человек в своей основе эгоистичен, наше осознанное предвидение – наша способность моделировать в воображении будущее – может спасти нас от наихудших эгоистичных эксцессов слепых репликаторов. В нашем мозгу есть по меньшей мере один механизм, заботящийся о наших долговременных, а не просто сиюминутных эгоистичных интересах. Мы можем увидеть долговременную пользу участия в “заговоре Голубей” и усесться за один стол для обсуждения способов реализации этого заговора. Человек обладает силой, позволяющей ему воспротивиться влиянию эгоистичных генов, имеющихся у него от рождения, и, если это окажется необходимым, – эгоистичных мемов, полученных в результате воспитания. Мы способны даже намеренно культивировать и подпитывать чистый бескорыстный альтруизм – нечто, чему нет места в природе, чего никогда не существовало на свете за всю его историю. Мы построены как машины для генов и взращены как машины для мемов, но мы в силах обратиться против наших создателей. Мы – един-ственные существа на планете, способные восстать против тирании эгоистичных репликаторов[61].

 

 

Глава 12. Хорошие парни финишируют первыми

“Хорошие парни финишируют последними”, – это выражение, по-видимому, родилось в мире бейсбола, хотя некоторые авторитеты настаивают, что противоположное утверждение появилось еще раньше. Американский биолог Гаррет Дж. Хардин воспользовался этой фразой, чтобы кратко сформулировать идею о том, что можно было бы назвать “социобиологией” или “эгоистичным генным механизмом”. Уместность такого использования очевидна. Если перевести общепринятый смысл слов “хороший парень” его дарвиновским эквивалентом, то “хороший парень” – это индивидуум, который помогает другим представителям своего вида, в ущерб самому себе, передавать их гены следующему поколению. Таким образом, число “хороших парней” неизбежно будет сокращаться. Существует, однако, и другая, техническая, интерпретация слова “хороший”. Если мы примем это определение, которое не слишком далеко отходит от разговорного смысла, то хорошие парни могут финишировать первыми. Именно этому более оптимистичному заключению и посвящена данная глава.

Вспомните Злопамятных из главы 10. Это были птицы, которые помогали друг другу, очевидно из альтруистичных побуждений, но Злопамятные при этом отказывали в помощи индивидуумам, которые ранее отказывались помочь им самим. Злопамятные в конечном счете заняли доминирующее положение, потому что передавали следующим поколениям больше генов, чем Простаки (помогавшие всем без разбора и поэтому подвергавшиеся эксплуатации) и Плуты (которые стремились безжалостно эксплуатировать всех и в конечном счете уничтожали друг друга). История Злопамятных иллюстрирует важный принцип, который Роберт Л. Триверс назвал реципрокным альтруизмом. Как мы видели на примере рыб-чистильщиков, в реципрокном альтруизме могут участвовать и представители разных видов. Он присутствует во всех взаимоотношениях, называемых симбиотическими, как, например, взаимоотношения между муравьями и их “дойными коровами” – тлями. После того как глава 10 была написана, американский политолог Роберт Аксельрод при участии Уильяма Д. Гамильтона, имя которого упоминается на столь многих страницах этой книги, использовал идею реципрокного альтруизма в новых очень интересных направлениях. Именно Аксельрод определил техническое значение слова “хороший”, о чем я упомянул во вступительном абзаце этой главы.

Аксельрод, подобно многим политологам, экономистам и психологам, был восхищен простой азартной игрой, получившей название “парадокс заключенных”. Она так проста, что я знаю умных людей, которые, не допуская такой простоты, совершенно неправильно ее понимали и пытались искать в ней что-то еще. Но простота обманчива. Целые полки в библиотеках отведены вариантам этой увлекательной игры. Многие влиятельные люди полагают, что в ней содержится ключ к планированию стратегической обороны и что нам следует изучать ее, если мы хотим предотвратить Третью мировую войну. Как биолог я согласен с Аксельродом и Гамильтоном в том, что многие дикие животные и растения заняты бесконечной игрой в “парадокс заключенных”, происходящей в эволюционных масштабах времени.

В своем первоначальном, человеческом, варианте эта игра состоит в следующем. Имеется “банкомет”, который судит игру и выплачивает выигрыши двум игрокам. Допустим, я играю против вас (хотя, как мы увидим, “против” – это как раз то, чего нам не следует делать). На руках у каждого игрока только по две карты: КООПЕРИРУЮСЬ и ОТКАЗЫВАЮСЬ. Каждый из нас выбирает одну из двух карт и кладет ее на стол рубашкой вверх, чтобы ни один из игроков не знал, как пошел другой (собственно говоря, оба ходят одновременно). Далее игроки напряженно ожидают, пока банкомет перевернет карты. Напряженность связана с тем, что выигрыш зависит не только от собственного хода, но и от хода противника.

Поскольку в игре участвуют 2 2 карты, возможны четыре исхода (из уважения к североамериканскому происхождению игры выигрыши приводятся в долларах).

Исход I. Оба сыграли КООПЕРИРУЮСЬ. Банкомет выплачивает каждому из нас по 300 долларов. “Награда за взаимное кооперирование”.

Исход II. Оба сыграли ОТКАЗЫВАЮСЬ. Банкомет штрафует каждого на 10 долларов. “Наказание за взаимный отказ”.

Исход III. Вы сыграли КООПЕРИРУЮСЬ, я – ОТКАЗЫВАЮСЬ. Банкомет выплачивает мне 500 долларов (“Плата за риск”) и штрафует вас (Простака) на 100 долларов.

Исход IV. Вы сыграли ОТКАЗЫВАЮСЬ, я – КООПЕРИРУЮСЬ. Банкомет выплачивает вам за риск 500 долларов и штрафует меня (Простака) на 100 долларов.

Очевидно, что исходы III и IV представляют собой зеркальные отражения один другого: один выигрывает, второй – проигрывает. При исходах I и II оба оказываются в равном положении, но исход I обоим выгоднее, чем исход II. Точная сумма выигрыша не имеет значения. Не играет роли и то, сколько исходов оказываются положительными (выплаты), а сколько – отрицательными (штрафы). Главное условие для того, чтобы игра стала настоящим “парадоксом заключенных”, – относительный ранг (цена) исходов. “Табель о рангах” должна быть следующей: “Плата за риск”, “Награда за взаимное кооперирование”, “Наказание за взаимный отказ”, штраф Простаку. (Строго говоря, есть еще одно условие, соблюдение которого необходимо для признания игры настоящим “парадоксом заключенных”: среднее между “Платой за риск” и штрафом Простаку не должно превышать Награды. Основания для этого станут понятны позднее.) Рассмотрим следующую матрицу.

 


 

 

При чем же тут парадокс? Попытайтесь представить себе мысли, проходящие через мою голову, когда я играю против вас. Я знаю, что имеются только две карты, с которых вы можете пойти: КООПЕРИРУЮСЬ и ОТКАЗЫВАЮСЬ. Обсудим их по порядку. Если вы пошли ОТКАЗЫВАЮСЬ (это означает, что нам надо смотреть на правую сторону матрицы), то лучшее, что я могу сделать, это также сыграть ОТКАЗЫВАЮСЬ. Правда, мне при этом придется заплатить штраф за взаимный отказ, но если бы я пошел КООПЕРИРУЮСЬ, то был бы оштрафован как Простак, что еще хуже. Обратимся теперь к левой половине матрицы: допустим, что вы пошли с карты КООПЕРИРУЮСЬ. И снова мне лучше играть ОТКАЗЫВАЮСЬ. Если бы я сыграл КООПЕРИРУЮСЬ, мы оба получили бы по 300 долларов. Если я играю ОТКАЗЫВАЮСЬ, то получаю даже еще больше – 500 долларов. Отсюда следует, что независимо от того, с какой карты вы пошли, моей лучшей тактикой будет “Всегда отказываюсь”.

Итак, я путем безупречных логических рассуждений установил, что независимо от ваших действий, я должен отказаться от сотрудничества. С помощью столь же безупречной логики к такому же выводу придете и вы. Таким образом, когда встречаются два разумных игрока, они оба будут отказываться и оба в конечном счете заплатят штраф либо получат небольшую выплату. При этом каждый прекрасно знает, что если бы они оба играли КООПЕРИРУЮСЬ, то каждый получил бы довольно высокую “Награду за взаимное кооперирование” (в нашем случае – 300 долларов). Поэтому-то игра и называется “Парадоксом”, причем она так парадоксальна, что может довести до исступления, и поэтому раздавались голоса за то, чтобы издать закон о ее запрещении.

“Заключенные” относятся к одному воображаемому примеру. Валютой в этом примере служат не деньги, а сроки заключения. Два человека – назовем их Петерсон и Мориарти – сидят в тюрьме по подозрению в соучастии в преступлении. Каждому из заключенных в его отдельной камере предлагают предать своего товарища (сыграть ОТКАЗЫВАЮСЬ), дав в суде показания против него. Дальнейший ход событий зависит от того, как поступят оба заключенных при том, что ни один из них не знает, как поступил другой. Если Петерсон свалит всю вину на Мориарти, а Мориарти, храня молчание, тем самым подтвердит это (кооперируясь со своим былым и, как оказалось, вероломным другом), то Мориарти получит длительный срок заключения, а Петерсон выйдет на свободу целым и невредимым, получив “Плату за риск”. Если каждый свалит вину на другого, обоих осудят за инкриминируемое им преступление, но оба получат некоторое снисхождение за дачу показаний и приговор окажется “Наказанием за взаимный отказ”, хотя и несколько смягченным. Если оба преступника кооперируются (друг с другом, а не с властями), отказываясь давать показания, то доказательств их вины может оказаться недостаточно, чтобы осудить кого-то одного из них за главное преступление, и они получат меньший срок за какое-нибудь более мелкое преступление – “Награда за взаимное кооперирование”. Вряд ли можно назвать тюремное заключение “наградой”, однако люди, которым грозило долгое пребывание за решеткой, воспримут его именно так. Вы должны были заметить, что хотя все выплаты выражены не в долларах, а в сроках тюремного заключения, главные черты игры сохраняются (обратите внимание на относительный ранг четырех исходов по их желательности). Если вы поставите себя на место каждого из заключенных, допуская, что обоими движет разумный эгоизм, и помня, что они не имеют возможности переговорить друг с другом, чтобы заключить соглашение, то вы поймете, что ни у одного из них нет иного выбора, кроме как предать другого.

Можно ли разрешить этот парадокс? Оба игрока знают, что, независимо от действий оппонента, лучшее, что они могут делать сами, это отказываться. Но при этом оба знают также, что если бы только они оба кооперировались, то каждый из них оказался бы в более выгодном положении. Если бы только… если бы только… если бы только существовала какая-то возможность достигнуть соглашения, какой-то способ убедить каждого из игроков, что другому можно верить, что он не пойдет на то, чтобы эгоистично сорвать банк, если бы имелся какой-то способ проконтролировать соглашение.

В простом варианте игры “Парадокс заключенных” такой способ отсутствует. Если хотя бы один из игроков не окажется настоящим праведником, не от мира сего, игра неизбежно окончится обоюдным отказом с парадоксально жалким результатом для обоих игроков. Однако есть и другой вариант этой игры. Она называется “итерированным (многократным) парадоксом заключенных”. Итерированный вариант игры сложнее, и его сложность вселяет надежду.

Итерированная игра – та же самая игра, повторенная бесконечное число раз с участием тех же игроков. Снова мы с вами сидим друг против друга, по обе стороны от банкомета. Снова у каждого из нас по две карты – КООПЕРИРУЮСЬ и ОТКАЗЫВАЮСЬ. Снова каждый из нас ходит, а банкомет выплачивает деньги или взимает штрафы. Однако на этот раз вместо того, чтобы закончить игру, мы снова берем карты и готовимся к следующей партии. Последовательные партии позволяют нам выяснить, следует ли доверять противнику или нет, отплачивать ему за каждый удар или умиротворять, прощать или мстить. В бесконечно долгой игре очень важно добиться того, чтобы мы оба выигрывали за счет банкомета, а не друг друга.

После десяти партий я теоретически мог бы выиграть пять тысяч долларов, но только в том случае, если вы необыкновенно глупы (или праведны) и всякий раз играли КООПЕРИРУЮСЬ, несмотря на то, что я все время ходил ОТКАЗЫВАЮСЬ. Более реально допустить, что каждый из нас получит три тысячи долларов за счет банкомета, если мы оба все десять раз сыграли КООПЕРИРУЮСЬ. Для этого нам не надо быть особенно праведными, так как мы оба можем убедиться на основании предшествующей игры противника, что ему можно доверять. Мы можем, в сущности, регулировать поведение друг друга. Вполне вероятен и другой оборот: ни один из нас не верит другому, и мы оба играем ОТКАЗЫВАЮСЬ все десять раз, а банкомет получает от каждого из нас сто долларов в виде штрафов. Скорее всего, мы частично доверимся друг другу, каждый будет играть вперемешку то КООПЕРИРУЮСЬ, то ОТКАЗЫВАЮСЬ – и в результате получит некую промежуточную сумму денег.

Описанные в главе 10 птицы, которые удаляли друг у друга клещей из перьев, играли в итерированный вариант “парадокса заключенных”. Птице очень важно избавляться от клещей, однако она не может добраться до собственной макушки и ей нужно, чтобы кто-то это сделал за нее. Казалось бы, справедливость требует, чтобы она впоследствии отплатила за эту услугу тем же самым. Но на процедуру вытаскивания клещей надо затратить время и энергию, хотя и не слишком много. Если птица может безнаказанно сплутовать, то есть если ей была оказана услуга, а она отказывается сделать то же самое, то она пожинает все плоды, не расплачиваясь за это. Расположите исходы в порядке их “цены” и вы убедитесь, что перед вами типичная игра “парадокс заключенных”. Когда оба кооперируются (вытаскивают друг у друга клещей), это дает достаточно хорошие результаты, однако остается соблазн добиться большего, отказавшись оплачивать стоимость ответной услуги. Если оба играют ОТКАЗЫВАЮСЬ (отказываются вытаскивать клещей), ничего хорошего не получается, однако еще хуже затрачивать усилия на вытаскивание клещей из другого индивидуума, а самому оставаться зараженным клещами. Соответствующая матрица представлена на рисунке.

 


 

 

Но это всего лишь один пример. Чем больше думаешь об этом, тем больше понимаешь, что не только жизнь людей, но также жизнь животных и жизнь растений переполнена играми типа “итерированного парадокса заключенных”. Жизнь растений? А почему бы нет? Вспомните, что речь идет не об осознанных стратегиях (хотя иногда можно говорить и о них), а о стратегиях в “мейнардсмитовском” смысле, стратегиях тех типов, которые могли бы программироваться генами. А пока займемся более глубоким изучением того, в чем состоит важность итерации.

В отличие от простого варианта игры, которая довольно предсказуема в том смысле, что ОТКАЗЫВАЮСЬ – единственная разумная стратегия, итеративный вариант предлагает много разных стратегий. В простом варианте возможны лишь две стратегии: КООПЕРИРУЮСЬ и ОТКАЗЫВАЮСЬ. Итерация, однако, допускает множество стратегий, и какая из них лучше всех – отнюдь не очевидно. Приведем в качестве примера одну из тысяч: “Играй по большей части КООПЕРИРУЮСЬ, но в выбранных случайным образом 10 % партий играй ОТКАЗЫВАЮСЬ”. Другие стратегии могут зависеть от того, как протекала игра перед этим. Примером служит мой “Злопамятный”: у него хорошая память на лица, и хотя в основном он склонен кооперироваться, он отказывается, если другой игрок отказывался когда-либо в прошлом. Другие стратегии могут быть более снисходительными и не такими злопамятными.

Число стратегий, возможных в итеративной игре, ограничено, очевидно, лишь нашей изобретательностью. Можно ли установить, какая из них лучше всех? Эту задачу поставил перед собой Аксельрод. У него возникла увлекательная идея провести конкурс, и он пригласил специалистов по теории игр представить свои стратегии. В данном случае стратегии – это заранее составленные программы действия, и соперники представили свои заявки на языке программирования. Было предложено четырнадцать стратегий. Аксельрод добавил к ним пятнадцатую, назвав ее “Случайной”, которая безо всякой системы играла то КООПЕРИРУЮСЬ, то ОТКАЗЫВАЮСЬ и служила своего рода базовой “антистратегией”: стратегию, дававшую худшие результаты, чем “Случайная”, следовало признать очень плохой.

Аксельрод описал все пятнадцать стратегий на одном языке программирования. Каждая стратегия поочередно сравнивалась по эффективности с каждой из остальных (в том числе с собственной копией) в игре “итерированный парадокс заключенных”. Поскольку стратегий было пятнадцать, компьютер сыграл 15 15 = 225 игр. После того, как каждая пара сделала двести ходов, все выигрыши были суммированы и был объявлен победитель.

Нас здесь не интересует, какая именно стратегия вышла победителем в игре против каждого отдельного противника. Нам важно установить, какая стратегия выиграла больше всего “денег” за все свои пятнадцать вариантов. “Деньги” – это просто “очки”, присуждаемые по следующей схеме: взаимное кооперирование – 3 очка; риск – 5 очков; наказание за взаимный отказ – 1 очко (эквивалент небольшого штрафа в игре, описанной ранее); штраф Простаку – 0 очков (эквивалент большого штрафа в игре, описанной ранее).

 


 

 

Максимально возможный выигрыш, который могла бы получить та или иная стратегия, составляет 15 000 очков (200 партий по 5 очков за партию с каждым из 15 противников). Минимальный результат составляет 0. Излишне говорить, что ни один из этих крайних результатов на самом деле не наблюдался. Наибольший выигрыш, на который может реально надеяться данная стратегия в среднем из своих пятнадцати турниров, не может сколько-нибудь значительно превысить 600 очков. Это все, что мог бы получить каждый из двух игроков, если бы они оба все время играли КООПЕРИРУЮСЬ, зарабатывая по 3 очка за каждую из 200 сыгранных партий. Если бы один из них поддался искушению отказаться, то число его очков, вероятно, оказалось бы меньше 600, так как другой игрок отплатил бы ему тем же (в большей части представленных стратегий было заложено в той или иной форме стремление к ответному удару). Мы можем использовать число 600 в качестве своего рода точки отсчета для данной игры и выражать результаты в процентах от этого числа. По такой шкале оценок теоретически можно довести выигрыш до 166 % (1000 очков), но практически ни одна стратегия не заработала в среднем больше 600 очков.

Не забывайте, что “игроками” в турнире были не люди, а программы, точнее – запрограммированные стратегии. Их авторы, то есть люди, выступали в той же роли, что и гены, программирующие тела (вспомните главу 4 – компьютер, играющий в шахматы, и компьютер, созданный по инструкциям с Андромеды). Стратегии, о которых идет речь, можно рассматривать как доверенных лиц их авторов. На самом деле кто-то из авторов мог бы представить не одну, а несколько программ (было бы жульничеством – которого Аксельрод, вероятно, не допустил бы, – если бы тот или другой автор “забил” весь турнир своими стратегиями и одна из них воспользовалась бы плодами жертвенного кооперирования со стороны других).

Было предложено несколько очень хитроумных стратегий, хотя они были, конечно, далеко не столь хитроумными, как их авторы. Интересно, что победившая стратегия была проще всех других и на первый взгляд наименее хитроумной. Она называлась “Око за око” и была представлена профессором Анатолем Рапопортом, известным психологом и специалистом по теории игр из Торонто. По этой стратегии первым ходом должно быть КООПЕРИРУЮСЬ, а в дальнейшем следует просто повторять предыдущий ход другого игрока.

Как проходит игра “Око за око”? Как всегда, развитие событий зависит от поведения второго игрока. Допустим для начала, что второй игрок – это тоже стратегия “Око за око” (напомним, что каждая стратегия играла не только против других, но и против копии самой себя). Обе стратегии “Око за око” начинают с кооперирования. При следующем ходе каждый игрок повторяет предыдущий ход противника, то есть кооперируется. Оба продолжают играть КООПЕРИРУЮСЬ до конца игры, которую оба заканчивают, достигнув на 100 % суммы очков, принятой за точку отсчета, то есть заработав по 600 очков.

Допустим, что “Око за око” играет против стратегии “Наивный испытатель”. На самом деле “Наивный испытатель” не участвовал в конкурсе Аксельрода, но тем не менее этот пример поучителен. “Наивный испытатель” в основном идентичен программе “Око за око”, с той разницей, что время от времени, скажем один раз за десять ходов, причем без всякой закономерности, он совершенно беспричинно играет ОТКАЗЫВАЮСЬ и требует 5 очков, причитающиеся ему за риск. До тех пор, пока “Наивный испытатель” не предпримет один из своих зондирующих отказов, оба игрока ведут себя в соответствии со стратегией “Око за око”. Однако внезапно, без предупреждения, скажем на восьмом ходу, “Наивный испытатель” отказывается. “Око за око”, разумеется, сыграла в этот раз КООПЕРИРУЮСЬ, а поэтому получила 0 очков, как это положено Простаку. “Наивный испытатель”, казалось бы, добился успеха, заработав за этот ход 5 очков. Но своим следующим ходом “Око за око” “мстит”: она играет ОТКАЗЫВАЮСЬ, просто следуя заложенному в нее правилу копировать предыдущий ход противника. Тем временем стратегия “Наивный испытатель”, следуя правилу копировать противника, повторила ее ход – КООПЕРИРУЮСЬ. В результате она платит штраф Простаку (0 очков), тогда как “Око за око” получает высшую плату – 5 очков. Своим следующим ходом “Наивный испытатель” (довольно несправедливо, как можно подумать) “мстит” за отказ стратегии “Око за око”. И такое чередование продолжается. При этом оба игрока получают в среднем по 2,5 очка за ход (среднее между 5 и 0). Это меньше, чем те верные 3 очка за ход, которые получают игроки, если они оба играют КООПЕРИРУЮСЬ (кстати, это и есть причина введения “дополнительного условия”). Итак, когда “Наивный испытатель” играет против стратегии “Око за око”, оба выигрывают меньше, чем в игре “Око за око” против своей копии. Если же игра идет между двумя “Наивными испытателями”, дела обоих обстоят еще хуже, так как серии взаимных отказов начинаются раньше.

Рассмотрим теперь еще одну стратегию, получившую название “Раскаивающийся испытатель”. Он сходен с “Наивным испытателем”, отличаясь лишь тем, что для запуска серии поочередных возмездий необходимо предпринимать активные шаги. Для этого ему нужна несколько более долгая “память”, чем у стратегий “Око за око” или “Наивный испытатель”. “Раскаивающийся испытатель” запоминает, был ли его отказ спонтанным и привело ли это к быстрому возмездию. В этом случае он, “полный раскаяния”, предоставляет своему противнику право на “один бесплатный удар”, за которым не следует возмездия. Это означает, что серии взаимных возмездий пресекаются в самом зачатке. Если теперь продолжить воображаемую игру между стратегиями “Раскаивающийся испытатель” и “Око за око”, то обнаружится, что серии мнимых взаимных возмездий быстро прерываются. На протяжении большей части игры противники кооперируются, что обеспечивает обоим большой выигрыш. “Раскаивающийся испытатель” играет более успешно против стратегии “Око за око”, чем “Наивный испытатель”, хотя и не так успешно, как “Око за око” против самой себя.

Некоторые из стратегий, участвовавших в турнире Аксельрода, были гораздо более хитроумными, чем “Раскаивающийся испытатель” или “Наивный испытатель”, однако они также набирали в среднем меньше очков, чем простая стратегия “Око за око”. В сущности наименее успешной из всех стратегий (если исключить “Случайную”) оказалась самая сложная, тщательно разработанная стратегия. Она была представлена анонимным автором, что послужило поводом для веселых гипотез. Кто автор? Какой-то серый кардинал в Пентагоне? Глава ЦРУ? Генри Киссинджер? Сам Аксельрод? Я думаю, что этого мы никогда не узнаем.

Подробно разбирать отдельные стратегии не так уж интересно. В задачи этой книги не входит обсуждение изобретательности программистов. Гораздо интереснее распределить имеющиеся стратегии по определенным категориям и изучать эффективность этих более крупных подразделений. Самая важная из различаемых Аксельродом категорий названа “добропорядочной”: она никогда не отказывается от кооперации первой. Примером служит “Око за око”. Она способна отказаться, но делает это только в порядке возмездия. “Наивный испытатель” и “Раскаивающийся испытатель” – “недобропорядочные” стратегии, потому что они иногда, хотя и редко, отказываются от кооперации безо всякого повода. Из пятнадцати стратегий, участвовавших в турнире, восемь были “добропорядочными”. Показательно, что эти же восемь стратегий набрали наибольшее число очков, а семь “недобропорядочных” остались далеко позади. Стратегия “Око за око” набрала в среднем 504,5 очка, что составляет 84 % от нашей точки отсчета (600 очков) и может считаться хорошим результатом. Другие “добропорядочные” стратегии набрали лишь немного меньше очков – от 83,4 до 78,6 %, оставив далеко позади самую успешную из всех непорядочных стратегий (Грааскамп), набравшую 66,8 % очков.

Еще один из технических терминов Аксельрода – “прощение”. У “прощающей” стратегии короткая память, хотя она может давать сдачи. Она очень быстро забывает о прошлых обидах. “Око за око” – “прощающая” стратегия. Она немедленно дает отказчику по рукам, но тут же забывает о нанесенной ей обиде. Описанный в главе 10 Злопамятный никогда не прощает. Он сохраняет в памяти все события до самого конца игры. Он никогда не забывает, если кто-то из игроков хотя бы один раз сыграл против него. Стратегия “Злопамятный” участвовала в турнире Аксельрода под именем Фридман и не достигла особенно хороших результатов. Среди всех “добропорядочных” стратегий (заметим, что она “добропорядочна” лишь в техническом смысле, но при этом совершенно ничего не прощает) пара Злопамятный-Фридман оказалась на втором месте с конца. Причина, по которой неспособные прощать стратегии не достигают хороших результатов, состоит в том, что они не могут разорвать серию взаимных возмездий даже в тех случаях, когда их противник “раскаивается”. Можно быть более снисходительным, чем стратегия “Око за око”. Стратегия “Око за два ока” разрешает своим противникам два отказа подряд и только потом мстит. Это может показаться слишком великодушным. Тем не менее Аксельрод установил, что если бы кто-то представил на рассмотрение стратегию “Око за два ока”, она победила бы в турнире. Это обусловлено способностью данной стратегии избегать серии взаимных возмездий.

Таким образом, мы определили качества выигрывающих стратегий: добропорядочность и способность к прощению. Это почти утопическое заключение, что добропорядочность и всепрощение окупаются, вызвало удивление у многих экспертов, которые пускались на всевозможные хитрости, предлагая стратегии, содержащие в себе скрытые элементы недобропорядочности. Даже те, кто предложил добропорядочные стратегии, не решились на что-либо столь всепрощающее, как “Око за два ока”.

Аксельрод объявил о втором турнире. Он получил 62 заявки и снова добавил к ним стратегию “Случайная”, что в сумме составило 63 стратегии. На этот раз по причине, о которой я скажу позднее, точное число ходов за партию – двести – не было оговорено заранее. Мы снова можем выражать в процентах оценки от точки отсчета или же от результатов, получаемых при условии “Всегда кооперируйся”, несмотря на то, что определение этой точки отсчета требует более сложных вычислений и она уже не всегда равна 600 очкам.

Всем программистам, участвовавшим во втором турнире, были представлены результаты первого турнира, а также проведенный Аксельродом анализ того, почему “Око за око” и другие “добропорядочные” и “способные к прощению” стратегии получили такие хорошие результаты. Разумеется, участники турнира тем или иным образом должны были учесть эту информацию. На самом деле они разбились на две группы. Одни считали, что добропорядочность и способность к прощению, очевидно, давали шансы на выигрыш, и соответственно предложили “добропорядочные”, “способные к прощению” стратегии. Джон Мейнард Смит зашел так далеко, что представил всепрощающую стратегию “Око за два ока”. Другая группа исходила из того, что многие участники, прочитав анализ Аксельрода, предложат теперь “добропорядочные”, “способные к прощению” стратегии. Поэтому они представили “недобропорядочные” стратегии, пытаясь использовать в своих интересах этих предполагаемых придурков.

Однако недобропорядочность опять оказалась невыгодной. Снова стратегия “Око за око”, представленная Анатолем Рапопортом, вышла победителем (96 % от 600 очков). И еще раз “добропорядочные” стратегии в общем оказались эффективнее непорядочных. Все пятнадцать более эффективных стратегий, за исключением одной, были “добропорядочными”, а из пятнадцати, набравших меньше очков, все, за исключением одной, были непорядочными. Но хотя праведная стратегия “Око за два ока” выиграла бы в первом турнире, если бы участвовала в нем, она не вышла победителем из второго. Это объясняется тем, что во втором турнире участвовали более коварные стратегии, способные безжалостно наброситься на столь откровенного придурка.

Такой результат выявил одно важное обстоятельство, характерное для этих турниров: успех той или иной стратегии зависит от того, какие стратегии участвуют в турнире. Это единственный способ объяснить различие между вторым турниром, в котором “Око за два ока” заняла гораздо более далекое место в турнирной таблице, и первым турниром, в котором эта стратегия выиграла бы. Однако, как я уже говорил, эта книга не о том, сколь изобретательны программисты. Существует ли способ, позволяющий решить, какую стратегию можно действительно считать наилучшей в более общем и менее произвольном смысле? Те, кто прочитал предыдущие главы, уже готовы искать ответ на этот вопрос в теории эволюционно стабильных стратегий.

Я был одним из тех, кому Аксельрод сообщил о своих ранних результатах с просьбой прислать стратегию для второго турнира. Я этого не сделал, но высказал другое предложение. Аксельрод уже начинал мыслить в терминах ЭСС, но я счел это столь важным, что написал ему, предложив связаться с Уильямом Д. Гамильтоном. Аксельрод не знал, что Гамильтон в то время работал в одном с ним университете – Мичиганском. Они немедленно встретились, и результатом их сотрудничества оказалась блестящая статья, опубликованная в 1981 году в журнале “Сайенс” и завоевавшая премию Ньюкомба Кливленда Американской ассоциации содействия развитию науки. Помимо обсуждения некоторых восхитительно оторванных от жизни биологических примеров “итерированных парадоксов заключенных”, Аксельрод и Гамильтон дали, с моей точки зрения, должную оценку подходу в свете теории ЭСС.

Сопоставьте этот подход с “соревнованием по круговой системе”, в соответствии с которым проводились два турнира Аксельрода. Каждая стратегия выставлялась против каждой из других стратегий одинаковое число раз. Конечная оценка стратегии определялась общей суммой очков, заработанных ею в играх со всеми остальными стратегиями. Таким образом, чтобы добиться успеха в соревновании по круговой системе, данная стратегия должна выстоять против всех других стратегий, которые людям вздумается предложить. Аксельрод назвал стратегию, способную победить широкий круг других стратегий, “сильной” стратегией. “Око за око” оказалась “сильной” стратегией. Однако набор стратегий, предлагаемых людьми в том или другом случае, произволен. Именно это беспокоило нас выше. По чистой случайности в первом турнире Аксельрода примерно половина стратегий относилась к “добропорядочным”. В этих условиях “Око за око” выиграла, а “Око за два ока” выиграла бы, если бы приняла участие в турнире. Допустим, однако, что все представленные стратегии случайно оказались непорядочными. Такая ситуация могла бы возникнуть очень легко. Ведь из четырнадцати предложенных стратегий шесть действительно были непорядочными. Если бы число непорядочных стратегий составило тринадцать, то “Око за око” не выиграла бы. Атмосфера оказалась бы для нее неподходящей. Не только сумма выигрыша, но и место в иерархическом ряду, выстраиваемом на основе достигнутого успеха, определяется тем, какие стратегии были представлены. Иными словами, все зависит от такого произвольного фактора, как прихоть того или иного человека. Как мы можем уменьшить эту произвольность? Если будем “мыслить в духе ЭСС”.

Как вы, вероятно, помните по первым главам, важная характеристика эволюционно стабильной стратегии состоит в том, что она продолжает оставаться эффективной, когда она уже многочисленна в данной популяции стратегий. Называя “Око за око” эволюционно стабильной стратегией, мы говорим, что “Око за око” эффективна в ситуации, в которой эта стратегия доминирует. Это можно рассматривать как особый тип “силы”. Как эволюционисты мы испытываем соблазн рассматривать его как единственный тип силы, имеющий существенное значение. Почему это так важно? А потому, что в мире дарвинизма выигрыши выплачиваются не в виде денег, а в виде потомков. Для дарвиниста успешная стратегия – это такая стратегия, которая стала многочисленной в данной популяции стратегий. Для того чтобы стратегия оставалась успешной, она должна быть особенно эффективной тогда, когда она многочисленна, когда она действует в обстановке, где доминируют ее собственные копии.

Аксельрод провел третий раунд своего турнира так, как его мог бы вести естественный отбор, стремящийся найти некую ЭСС. Правда, он не назвал это третьим раундом, поскольку он не обращался с просьбами о новых предложениях, а использовал те же 63 стратегии, что и во втором раунде. Мне кажется удобным рассматривать его как третий раунд, потому что, по-моему, он отличается от двух “соревнований по круговой системе” более основательно, чем эти два соревнования отличаются друг от друга.

Аксельрод взял 63 стратегии и вновь ввел их в компьютер в качестве “генерации 1” некой эволюционной последовательности. Поэтому в “генерации 1” были равномерно представлены все 63 стратегии. В конце “генерации 1” каждой стратегии был выплачен выигрыш не в виде “денег” или очков, но в виде потомков, идентичных своим родителям (бесполым). С течением времени, по мере того, как одно поколение сменялось другим, некоторые стратегии становились редкими и в конце концов исчезали. Другие стратегии стали встречаться чаще. Вслед за изменением этих соотношений изменялась и “обстановка”, в которой происходило дальнейшее развитие игры.

В конце концов, по прошествии примерно тысячи поколений, изменения обстановки прекратились. Была достигнута стабильность. До этого благосостояние различных стратегий возрастало и падало, точно так же, как при компьютерном моделировании стратегий Плутов, Простаков и Злопамятных. Некоторые стратегии пошли на убыль с самого начала, а к двухсотому поколению большая их часть вымерла. Одна или две из непорядочных стратегий стали встречаться все чаще, однако их процветание, как и у Простака в моей модели, было недолгим. Единственная непорядочная стратегия, сохранившаяся по прошествии двухсот поколений, была стратегия “Харрингтон”. Выигрыши этой стратегии резко возрастали на протяжении первых 150 поколений, а затем довольно медленно снижались, и стратегия практически вымерла к 1000-му поколению. Стратегия “Харрингтон” была успешной в течение некоторого времени по той же причине, что и моя оригинальная стратегия Плута. Она эксплуатировала придурков вроде стратегии “Око за два ока”, пока они еще существовали. Затем, после того как эти придурки были доведены до вымирания, стратегия “Харрингтон”, лишившись легкой добычи, последовала за ними. Арена оказалась свободной для таких добропорядочных, но дерзких стратегий, как “Око за око”.

Сама стратегия “Око за око” действительно взяла верх в пяти из шести партий третьего раунда, точно так же, как это было в первом и втором раундах. Пять других добропорядочных, но дерзких стратегий добились почти такого же успеха (высокая частота в популяции), как “Око за око”, одна из них даже победила в шестой партии. После того как все “недобропорядочные” стратегии были доведены до вымирания, ни одну из “добропорядочных” стратегий нельзя было отличить от “Ока за око” или друг от друга, потому что все они, будучи “добропорядочными”, просто играли друг против друга КООПЕРИРУЮСЬ.

Эта неразличимость означает, в частности, что хотя “Око за око” напоминает ЭСС, она, строго говоря, не является настоящей ЭСС. Вспомним: чтобы быть ЭСС, стратегия, когда она становится широко распространенной, должна быть защищена от проникновения той или иной редкой мутантной стратегии. Что же касается стратегии “Око за око”, то хотя она и не допускает проникновения какой-либо “недобропорядочной” стратегии, от других “добропорядочных” стратегий она не защищена. Как мы только что видели, в популяции “добропорядочных” стратегий все стратегии будут выглядеть и вести себя совершенно одинаково: все они будут играть КООПЕРИРУЮСЬ. Таким образом, любая другая “добропорядочная” стратегия, подобно совершенно праведной “Всегда кооперируйся”, хотя предположительно она будет обладать положительным селективным преимуществом над стратегией “Око за око”, тем не менее может проникнуть в популяцию незамеченной. Поэтому технически “Око за око” нельзя считать ЭСС.

Можно подумать, что поскольку мир продолжает оставаться таким же добропорядочным, мы могли бы рассматривать “Око за око” как ЭСС. Но, боже, посмотрите, к чему это приведет! В отличие от “Ока за око”, стратегия “Всегда кооперируюсь” неустойчива к проникновению “непорядочных” стратегий, таких, как “Всегда отказываюсь”. Стратегия “Всегда отказываюсь” эффективна против “Всегда кооперируюсь”, поскольку она всякий раз получает 5 очков за риск. “Непорядочные” стратегии, такие, как “Всегда отказываюсь”, вступят в игру, поддерживая на низком уровне численность слишком добропорядочных стратегий, таких, как “Всегда кооперируюсь”.

Однако, хотя “Око за око”, строго говоря, не является истинной ЭСС, было бы, вероятно, справедливо рассматривать некую смесь в своей основе “добропорядочных”, но мстительных стратегий, подобных “Око за око”, как примерно эквивалентную ЭСС. Такая смесь может содержать небольшую добавку непорядочности.

Роберт Бойд и Джеффри Лорбербаум в одной из интересных работ, продолжающих исследования Аксельрода, рассматривают смесь стратегии “Око за око” и стратегии, названной “Недоверчивая око за око”. Последняя технически относится к числу “непорядочных”, но она не слишком уж “непорядочна”. Она ведет себя точно так, как сама “Око за око” после первого хода, но – и именно это делает ее технически “непорядочной” – играет ОТКАЗЫВАЮСЬ при самом первом ходе. В условиях полного доминирования стратегии “Око за око” стратегия “Недоверчивая око за око” не может процветать, потому что ее первоначальный отказ запускает непрерывную цепь взаимных обвинений. Если же она встречается с игроком, принявшим стратегию “Око за два ока”, то великодушное всепрощение последней пресекает этот поток взаимных обвинений в зародыше. Оба игрока заканчивают игру с результатом не ниже принятого за точку отсчета (то есть одни тройки), причем “Недоверчивая око за око” получает премию за свой начальный отказ.

Бойд и Лорбербаум показали, что в популяцию стратегий “Око за око” может проникнуть в эволюционном смысле смесь “Око за два ока” и “Недоверчивая око за око” – двух стратегий, процветающих в сочетании друг с другом. Это почти наверное не единственная комбинация, способная к подобной инвазии. Существует, возможно, много смесей слегка “непорядочных” стратегий с “добропорядочными” и “прощающими”, которые способны к совместной инвазии. Во всем этом можно увидеть как бы отражение хорошо знакомых ситуаций, встречающихся в жизни людей.

Аксельрод понимал, что “Око за око”, строго говоря, нельзя считать ЭСС, и поэтому он описал ее как “коллективно стабильную” стратегию. Как и в случае настоящих ЭСС, коллективно стабильными могут быть одновременно несколько стратегий. И снова доминирование в популяции зависит просто от везения. “Всегда отказываюсь” – стабильная стратегия, как и “Око за око”. В популяции, в которой “Всегда отказываюсь” уже достигла доминирующего положения, ни одна другая стратегия не может превзойти ее по эффективности. Мы можем рассматривать систему как имеющую две точки стабильности: одна из них “Всегда отказываюсь”, а другая – “Око за око” (или какая-то смесь по большей части добропорядочных ответных стратегий). Та точка стабильности, которая первой займет доминирующее положение в популяции, и останется доминантной.

Что же означает “доминирование” на количественном уровне? Каким должно быть число стратегий “Око за око”, чтобы она одолела “Всегда отказываюсь”? Это зависит от конкретных выплат, на которые банкомет согласился пойти в данной игре. В общем можно лишь сказать, что существует некая критическая частота, некий рубеж. По одну его сторону критическая частота стратегии “Око за око” превышена – и отбор начинает все больше и больше благоприятствовать этой стратегии. По другую сторону превышена критическая частота стратегии “Всегда отказываюсь” – и отбор все больше и больше благоприятствует этой последней. Мы уже встречались с такой ситуацией в главе 10, при рассмотрении Злопамятных и Плутов.

Совершенно очевидно поэтому, сколь важное значение имеет то, по какую сторону от рубежа в самом начале окажется данная популяция. Нам необходимо также знать, каким образом популяция может иногда переходить с одной стороны рубежа на другую. Допустим, мы начинаем с популяции, уже находящейся на стороне “Всегда отказываюсь”. Немногочисленные индивидуумы, придерживающиеся стратегии “Око за око”, не встречаются друг с другом достаточно часто, чтобы быть взаимно полезными. Таким образом, естественный отбор толкает популяцию еще дальше, к крайней точке “Всегда отказываюсь”. Если бы только эта популяция смогла каким-то образом, в результате случайного дрейфа переступить рубеж, она могла бы скатиться по склону на сторону стратегии “Око за око”, и всем это было бы очень выгодно, а расплачивался бы банкомет (или Природа). Но, разумеется, популяции не обладают ни волей, ни намерениями или целями, общими для всей группы. Они не могут стремиться к тому, чтобы перейти рубеж. Они перейдут его только в том случае, если их поведут за собой ненаправленные силы Природы.

Как это может произойти? Можно было бы ответить: “Случайно”. Однако слово “